
Award Number:  
W81XWH-09-1-0410 

TITLE: 
Harnessing the Power of Light to See and Treat Breast Cancer 

PRINCIPAL INVESTIGATOR: 
Nirmala Ramanujam  Ph.D.

CONTRACTING ORGANIZATION:  Duke University 
Durham, NC 27708

REPORT DATE: December 2015

TYPE OF REPORT: Final 

PREPARED FOR:   U.S. Army Medical Research and Materiel Command 
         Fort Detrick, Maryland  21702-5012 

DISTRIBUTION STATEMENT: Approved for Public Release; 
Distribution Unlimited 

The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
December 2015

2. REPORT TYPE
Final 

3. DATES COVERED (From - To)
18 Sep 2009 - 17 Sep 2015

4. TITLE AND SUBTITLE

 

 

5a. CONTRACT NUMBER 

Harnessing the Power of Light to See and Treat Breast Cancer 
5b. GRANT NUMBER 
W81XWH-09-1-0410 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

  Nirmala Ramanujam Ph.D. 

 

5e. TASK NUMBER 

 email: nimmi@duke.edu

 

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

 
Duke University 
            
                 
Durham, NC 27708 
 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research And Materiel Command 

Fort Detrick, Maryland 21702-5012

11. SPONSOR/MONITOR’S REPORT

      NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. 
 13. SUPPLEMENTARY NOTES

14. ABSTRACT
Our objective is to exploit the wealth of physiological, metabolic, morphological and molecular sources of optical contrast to 
develop novel strategies that focus on two breast cancer applications: tumor margin assessment and prediction of response to 
neo-adjuvant therapy. The proposed aims of this grant are expected to result in three major contributions. The first has the 
most immediate impact. An optically based strategy that can quickly and non-destructively detect positive tumor margins will 
decrease the need for re-excision surgery and thereby decrease the local recurrence rate and rate of distant metastases in 
women electing BCS. Gaining insight into the physiological, metabolic, morphological and molecular sources of heterogeneity 
within and among tumors and how they are modulated by therapy, drug resistance and metastatic potential will directly benefit 
prognostication, prediction of outcome and planning of cancer therapies. With these tools, clinicians and clinical researchers 
can get a better understanding of this disease and how it might react to a drug. Basic science researchers could use it as an 
informed approach to study tumor biology and assay the effect of novel therapeutic agents in vivo. 

15. SUBJECT TERMS
optical spectroscopy, imaging, fiber-optic, molecular, screening, breast cancer 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
USAMRMC 

a. REPORT
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

UU 73 19b. TELEPHONE NUMBER (include area 
code) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



Table of Contents 

COVER PAGE 1  

STANDARD FORM 298 2     

INTRODUCTION 4     

BODY    5     

KEY RESEARCH ACCOMPLISHMENTS          54     

REPORTABLE OUTCOMES           55     

CONCLUSIONS          56     



1. INTRODUCTION

Our objective is to exploit the wealth of physiological, metabolic, morphological and molecular 
sources of optical contrast to develop novel strategies that focus on two breast cancer 
applications: tumor margin assessment and prediction of response to neo-adjuvant therapy. The 
proposed aims of this grant are expected to result in three major contributions. The first has the 
most immediate impact. An optically-based strategy that can quickly and non-destructively 
detect positive tumor margins will decrease the need for re-excision surgery and thereby 
decrease the local recurrence rate and rate of distant metastases in women electing BCS. 
Gaining insight into the physiological, metabolic, morphological and molecular sources of 
heterogeneity within and among tumors and how they are modulated by therapy, drug 
resistance and metastatic potential will directly benefit prognostication, prediction of outcome 
and planning of cancer therapies. With these tools, clinicians and clinical researchers can get a 
better understanding of this disease and how it might react to a drug. Basic science researchers 
could use it as an informed approach to study tumor biology and assay the effect of novel 
therapeutic agents in vivo. 

a. Original Statement of Work for 5 Years

Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: To 

evaluate the role of wide-field imaging (coverage) and high-resolution interrogation (localization) 

of breast margin morphology to guide surgical resection intra-operatively and pathologic 

assessment of the tumor margin post-operatively (Timeframe: year 1-5). 

1a. Development of one optical spectral imaging system that integrates sensing capabilities 
for aims 1 and 2 and a high-resolution probe that can image absorption, scattering and 
fluorescence contrast (timeframe, year 1). 

1b. Conduct clinical studies on lumpectomy margins on 200 patients (time frame, years 2-4) 

1c. Data analysis and interpretation (timeframe, years 3-5) 

Test the sensitivity and specificity of wide-field imaging to detect positive tumor 
margins 

Test sensitivity and specificity of high-resolution probe to detect IDC and DCIS. 

Aim 2: Optical quantitative biology of different sub-types of breast cancer: To investigate 

biomarkers of oxygenation, carotenoids (β-carotene) and ECM proteins (collagen) in human 

breast cancer stratified by tumor sub-type and receptor status and their association with neo-

adjuvant chemotherapy response. 

2a. Development of rotating needle compatible spectroscopy probe (timeframe, year 1). 

2b.Conduct clinical studies to measure optical biomarkers in vivo in 150 patients undergoing 
surgery (timeframe, years 2-4). 

2c. Conduct clinical studies to measure optical biomarkers from 75 patients before neo-
adjuvant therapy 

2d. Data analysis and interpretation (years 3-5): 

Determine association of biomarkers with tumor subtype 

Determine association of biomarkers with receptor status 



Determine association of biomarkers with genomic signatures 

Determine association of biomarkers with pathologic sub-total and complete 
response 

 

Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 

breast cancer: To investigate biomarkers of oxygenation and ECM proteins (collagen and αvβ3 

expression) in rodent breast cancer stratified by tumor sub-type, receptor status and metastatic 

potential in response to targeted and chemotherapies. 

3a. To determine if multi-parametric intra-vital optical microscopy, measuring hemoglobin 
saturation, total hemoglobin, redox ratio, collagen, and integrin expression can monitor 
tumor response to tamoxifen in parental and tamoxifen-resistant MCF-7 tumors in the 
mouse dorsal skin fold window chamber (timeframe, years 1-2). 

 A total of 40 athymic nude mice will be required for this study (10 
mice/group).  

3b. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in MCF-7 parental and doxorubicin-resistant tumors 
(timeframe, years 2-3). 

 A total of 40 athymic nude mice will be required for this study. 

3c. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in tumors that express high (MDA-435) and low (MCF-7) 
levels of αvβ3 integrin (timeframe, years 3-4). 

 A total of 40 athymic nude mice will be required for this study. 

3d.  Data and statistical analysis (timeframe, year 5). 

 

  



2. BODY

 Aim 1:  Optical imaging of margin morphology on breast lumpectomy specimens: 

Aim 1 seeks to leverage diffuse optical spectroscopy as a tool for rapidly surveying breast tumor 

margins. Specifically, we use a wide-field high-resolution diffuse optical spectroscopy device to 

quantify the likelihood of residual disease at the tumor excision site. The analysis must be 

performed rapidly to afford the surgeon enough time to act on the information. Initial studies for 

aim 1 informed the sources of optical contrast and established timing considerations, resulting in 

development of a 49-channel (49ch) device with a large field of view. The 49ch device was 

developed to survey a typical lumpectomy surface in a single spectral snapshot. In year 4, the 

49ch device was further augmented with the development of computer-numeric-controlled 

(CNC) imaging platform to further improve the resolution and reduce random error introduced by 

the user. A custom multi-spectral LED light source was developed to improve system SNR and 

reduce the overall acquisition time (year 5). The high-power LEDs used afford a tenfold 

reduction in total acquisition time. In the final year, the acquisition and control software was 

revised to provide hi-resolution real-time optical property maps to aid in the designation of 

specific sites for pathological review and device validation. In this final year, we report our 

patient data analysis utilizing the optimized device. 

Introduction 

We have previously demonstrated that wide-field optical imaging of tumor morphology detects 

positive margins (margins with IDC and DCIS) with accuracies that well exceed that of the 

breast surgeon. Here we further refine our understanding of the micro-architectural differences 

between different types of tumor margin sub-types, in particular, DCIS, towards improving 

sensitivity and specificity. Our approach is to image the boundaries of the excised tumor mass, 

which is consistent with the existing paradigm for post-operative pathologic margin assessment, 

using the 49-channel device to acquire wide-field images of the tumor margins.  We have 

previously shown that both radiographic breast density, as well as neoadjuvant status, impact 

the spectroscopic data of the surgical margins and should be considered when assessing the 

margin status. In this work, we investigate the influence of additional system parameters 

afforded by the latest generation wide-field imaging technology, such as sampling resolution 

and optical changes related to the pressure at the tissue-probe interface. Furthermore, we 

present a follow- up study based on empirical cumulative distribution functions (eCDFs) to 

corroborate previous findings now in the context of improved resolution.  Data acquired from the 

first 57 patients using the hi-resolution wide-field system are analyzed and discussed.  

Results 

Part A. Advancing optical imaging for breast margin assessment: 

Introduction 

Breast conserving surgery (BCS) is a recommended treatment for early-stage breast cancer 

and for breast cancers that have been reduced in size by neoadjuvant therapy.  The goal of 



BCS is to excise the tumor along with a margin of normal tissue, while preserving as much of 

the normal breast tissue as possible.  Unfortunately, as many as 18-72% of patients undergoing 

BCS require repeat surgeries due to a close or positive surgical margin diagnosed post-

operatively and thus, require a re-excision surgery to achieve cancer free margins [1-9].  The 

large variation in re-excisions is thought to be due to differences in surgeon’s training and in the 

perceived risk of focally positive margins versus extensive involvement [10].  

Surgery to remove the cancer and obtain clear margins is a collaborative effort between the 

surgeon and the pathologist (and in some institutions, the radiologist). In spite of this, there can 

be substantial variability in the prediction of positive margins in the intra-operative and post-

operative settings. Surgeons do not have adequate intra-operative assessment tools to ensure 

that the cancer has been completely removed at the time of first surgery.  Pathologists do not 

have adequate tools for sampling from areas on large tumor margins.  The lack of these 

capabilities represents a significant unmet clinical need for margin assessment for both the 

surgeon and pathologist.     

Optical imaging of tissue is an attractive solution to this problem because it is relatively fast and 

non-destructive.  Optical techniques can also measure features related to the histological 

landscape without the need for labels.  Before this technology can be used in an intra-operative 

setting or in a post-operative setting, systematic studies have to be performed to determine 

which surgical and post-surgical factors affect the precision and accuracy with which this 

technology maps optical contrast. This is true not only for our technology but other technologies, 

both optical and non-optical that are intended for this application.  

In the following section, we review technological optimizations to the clinical instrumentation. In 

previous reports, we detailed the transition to the 49-channel wide-field imaging probe and 

custom raster-scanning imaging platform. We used this technology to examine the impact of the 

pressure at the probe-tissue interface in the context of false-positive/ false negative rates. The 

optimal scanning resolution was determined to maximize the likelihood of detecting small 

regions of focal disease with intra-operative time scales in mind. The optimal raster-scanning 

upsample factor was determined to be 8: a full scan of a single margin can be acquired in less 

than 15 minutes (12.8mins) at a resolution better than 1mm (.75mm). Considering breast tumor 

margin assessment, resolution greater than 1mm is warranted to increase the probability of 

detection of focal disease. Small regions of focal disease are particularly important to discover 

as standard of care stipulates that partial mastectomy specimens be sliced at 5mm increments 

for histological preparation. The optical property extraction accuracy of the wide-field 49-channel 

probe was shown consistent with previous generation devices (less than 10% for mus’ and 

mua). The reproducibility of the scanning mechanism was evaluated clinically and shown to be 

within 1%.   

 

One identified clinical limitation with the integrated spectral scanning system is the manner in 

which the sites marked for histopathological review are performed. After a scan has taken place, 

the user replaces the probe with a plastic component with the exact geometry of the probe used 

but with holes in place of the optical channels. The downside to this is twofold: 1) ink dots can 

only be placed where an optical channel exists, meaning that each dot must be offset by at least 



the pixel pitch of the probe. In the case of breast tumor margins, there is typically a dense 

region of tumor/morphological activity or a very sparse, subtle region of localized disease. To 

accurately corroborate our technology across all tissue subtypes, there must be mechanism to 

remove this geometric constraint such that any suspicious region can be indicated for review by 

pathology. The second limitation stems from the contact made by the inking hardware; because 

the inking plate is pressed against the hardware, the ink tends to run along the hardware and 

tissue surface, resulting in smeared dots that make the exact location of the ink centroid 

ambiguous. 

Detailed in this section is the final phase of the imaging platform development. We implement 

optimizations to facilitate sample co-registration, guided site-level inking (explained in detail 

below), improve sanitation, and enhance the device footprint.  

Methods 

The final platform embodiment is achieved with the addition of a board-level camera, an 

integrated low-power laser, and a copper specimen base plate.  The imaging platform was 

redesigned to improve modularity and utilize low-cost ABS plastic instead of machined 

aluminum, reducing the overall cost and weight.  Optically aligned dovetail attachments were 

developed to house a low-power laser, similar to a laser pointer that is programmatically 

powered and positioned. Software updates detailed in Part B allow the user to choose any pixel 

within the upsampled image to position the laser, at which point the site can be inked without 

any hardware interference or limitation on the next inked location. The position was tracked in 

software using the number of steps output to each motor relative to a stop switch-based home 

position, providing precise (±3µm) co-registration information for the optical parameter maps.  

Informed by routine clinical use; sanitization was addressed as the polycarbonate plate (where 

the specimen rests) began to scuff and retain residual tissue. The polycarbonate plate also did 

not provide enough resistance to keep the specimen in place while the probe established 

contact. The specimen plate was replaced with 2mm thick copper plate machined in-house to 

provide a small, grooved cavity to prevent the specimen from moving.  

Results 

The spatial translation approach was modified such that the specimen is translated in the x,y 

directions while the probe is translated in the z direction, as opposed to translating the probe in 

each dimension (previous method). Fig. 1.1 illustrates the reduction in size resulting from this 

modification. Two separate dovetail attachment points were designed to accompany the probe 

hardware, the inking hardware, and the digital camera. These attachment points share an 

optical axis and allow the user to interchange the components as needed for the clinical 

circumstance. The importance of this design is obvious in the case of specimens containing 

radio-active seeds; the specimen cannot be removed from a specialized container to ensure 

that the seed is not lost and mistakenly assumed to be still inside the patient. This container 



prevents the imaging probe from making contact with the specimen without specialized 

hardware that is easily interchanged with the dovetail design.  

 

 

Figure 1.1 Imaging platform generations. a) The second generation platform and b) the optimized third 

generation device incorporating a copper specimen plate, a modular webcam, and a smaller footprint 

(152 x 228 x 304 mm compared to 304 x 304 x 406 mm). The feed rate and pressure mechanism is 

equivalent for the two devices.  

Part B. Algorithm Development 

Within this section we report extensive enhancements to the data acquisition and 
processing algorithms leveraged by the spectral imaging system. Comprehensive software 
development was prompted through limitations experienced during routine clinical use; 
hardware driver conflicts, undetected cable detachments, improper data labeling, and the lack of 
a robust acquisition decision tree rendered ~20%  of clinical case data unusable in year 5. 
Detailed below are strategic enhancements for improved case efficacy, ease-of-use, and 
reduced failure rates.   

Methods 

A spectral imaging software package was developed based on the software 
requirements analysis shown below in Table 1.1 The goal of the design was chosen to be semi-
automated/user-centered, thus, default parameters and processes were implemented to work 



for the majority of users in most circumstances. Furthermore, the views for the graphical user 
interface were storyboarded based on the high level objectives of the software: 1) automatically 
find the hardware, 2) initialize the hardware, 3) take measurements to calibrate the hardware, 4) 
acquire the sample data, 5) process the sample data, 6) determine high-probability regions of 
disease.  

Table 1.1 Software Requirements. 
Category Requirement Rationale 

Functional   Must be able to read, store, and display 
spectral data 

 Must be able to obtain optical properties 
from spectral data 

 Must be able to indicate regions of interest 
on acquired data 

 Must have device specific default values 

 A system that is ready to go with 
negligible setup will improve the 
quantity of high quality data.  

Behavioral  Hardware is automatically found and 
settings loaded 

 Calibration procedure is required to take 
measurements 

 Type of measurement is chosen 

 If defaults are used, user enters sample 
information (3 digit number) and 
measurement starts 

 Screen automatically changes view as data 
is acquired 

 Optical parameters are computed as soon 
as a “Reflectance Frame” is available 

 Once complete, user is able to select 
region of interest. Region of interest is also 
suggested. Region of interest is translated 
to central optical axis for marking.  

 Data anomalies and user errors should be 
accounted for and handled automatically in 
software. Each class should have its own 
error handling modules.  

 If the device can be operated by a lay-
person, data yield would improve.  

 An intuitive user-interface helps to 
ensure data quality 

 Reducing user decisions avoids 
unnecessary withdrawals 

Structural  Raw spectral data is represented as a 
“measurement object” 

 A series of raw measurements comprise a 
“Spectral Frame” which can be a 
calibration, intensity, or reflectance frame. 
Elements of a frame iterate over all 
spectral, detector, and illumination 
channels. Repeated measures are 
included 

 A series of frames comprise a “Multivariate 
Scan" which can be a calibration scan, 
generic scan over any measurement 
variable, or a clinical scan including case 
information. Ex: A raster-scan is a clinical 
scan over position and pressure 

 Display panels are structured according to 
this hierarchy 

 A generic method of formatting the 
spectral data enables device 
abstraction; any spectral imaging 
device can be utilized 

 Separating clinical/calibration/other 
enables dynamic dispatch of 
processing/saving functions 

 Display is simplified by grouping panel 
elements according to datatype 

Performance  Optical parameter computations cannot be  Data must be acquired on intra-



slowed by saving and displaying data, 
therefore, these operations must be queue-
based background threads 

 Physical data capture must be less than 
15s per single measure frame 

 Physical data capture must have execution 
priority  

 Imaging rate (excluding optical parameters) 
should be less than 1.2cm

2
/s 

 Optical parameters must be obtained with 
at a rate of 0.5s/spectrum or less 

operative time scales (25-30 
minutes/case) 

 Slower imaging rates force poorer 
resolution, reducing data quality 

 Optical parameters need to be 
visualized soon after the measurement 
is complete (less than 5 minutes) 

 

To generically handle different modes of acquisition and maintain scalability, an object-oriented 
design was implemented. The object-oriented G programming language developed by National 
Instruments© was used to reduce overall development time as the hardware interface protocol 
libraries are provided in G.  Furthermore, the use of an object oriented design aids in meeting 
the generality design requirement; a hardware abstraction layer (HAL) can was implemented to 
abstract away hardware functions from hardware specific drivers, reducing hardware specific 
conflicts. The HAL is diagrammed in Fig. 1.2. 

 

Figure 1.2 Software Abstraction. The software architecture is designed such that fundamental hardware 
functions are implemented generically to control a spectral imaging device. Typically a spectral imaging 
device will be comprised of a calibration standard, a light source, a detector, and a probe. Each 
associated function in the hardware abstraction layer (red) is then over-ridden by the hardware specific 
drivers(bottom, blue) at run-time. This provides a mechanism to generate spectral data in a generic 



format (shown here as a function of position, wavelength, and pressure) that can then be used by the rest 
of software package regardless of the specific hardware used.  

Results 

The class hierarchy and grouping is shown in Fig. 1.3. The bulk of the software can be 

described as a component of 1 of 3 groups; 1) A core group relating to primary application and 

hardware components, 2) a display group that handles rendering data to the user, and 3), a 

data group pertaining to formatting, saving, and processing the collected data. The primary 

classes (Fig.1.3a) consist of: an application class that coordinates general startup, execution, 

and shutdown of necessary applications, a command class to harmonize requests and data 

between applications, hardware, and the user, a hardware class to manage each hardware 

component, and variable class that is used to specify parameters that need to be modified 

between acquisitions e.g. the next position. When the primary user interface (labeled QDRI) is 

launched (executable), an initialization routine starts all other needed applications (platform 

application, data management). Additionally, a “spectral imaging device” object is created 

consisting of the core components for any spectroscopy system: a light source, an acquisition 

source, a calibration object, and a probe. The specific drivers are determined by identifying 

connected hardware, which is done automatically for previous used devices. The user works 

through a series of panels needed to determine the remaining modules that should be loaded 

into memory and the type of data that will be collected. To minimize user error, the default 

parameters are set to known working values for any recognized hardware. The user can change 

these, but otherwise navigates through each screen in a touch –panel fashion, requiring minimal 

user decision. When the measurement is started, a series of commands are inserted into a 

queue that is read by the main application and dynamically dispatched the system and platform 

child command classes. When generated, the command is typically setup to generate a signal, 

relay reference information, or collect data based on an independent measurement variable. 

The utilization of measurement variable classes affords the ability to manipulate the 

measurement using any modifiable parameter, such as the integration time, light intensity, 

pressure, or position. The respective command classes call the abstract hardware classes, 

issuing generic commands that are overloaded by the hardware-specific child classes. The 

acquired data is pushed onto a queue read by a background thread responsible for managing 

the data. The data manager interprets all data generically for the current measurement context, 

allowing the specific data class to override and implement the specifics of the saving, displaying, 

and processing functions. The software was designed in this manner to achieve maximum 

scalability; the software package is hardware and acquisition sequence independent. 

The data is simultaneously saved and pulled from a second queue to the front panel 

display: each of these processes are non-deterministic and require parallel execution 

independent from other time-critical processes. The display classes are determined by the data 

class and measurement context. The user has the option of allowing the software to dynamically 

toggle the display panel type, ensuring each measurement action is visible to the user. The 

spectral data classes are efficiently organized by data complexity: the raw data, the most basic 

form of data, represents the raw numeric readout obtained from the acquisition hardware. The 

raw data contains the context in which was acquired (intensity vs background, repeated 



measure, etc.) a snapshot of the devices, and is simultaneously inserted into a “spectral frame” 

according to the context. If a calibration scan has already been completed, the spectral frame is 

dispatched to a reflectance frame, otherwise it can become an intensity frame or a calibration 

frame. A frame consists of an array of raw measurements corresponding to a complete, multi-

channel spectral snapshot including the repeated measures. A completed frame automatically 

averages the repeated measures and is displayed on a separate pane. A complete spectral 

snapshot is captured for every unique measurement variable, collectively representing a 

“multivariate scan.” A scan object contains all variables that are modified during a scan. For 

example, a raster-scan with an upsample of 8 would generate 64 separate measurement 

variables each containing one position used in the upsampled parameter maps. Clinical and 

calibrations scans additionally have properties specific to those scan types; this is later used to 

generated the correct save path. The final data module is dedicated to intraoperative spectral 

data inversions (conversion of raw reflectance to optical parameter maps) and is yet another 

queue-based module. The inverse model utilizes a scalable Monte-Carlo package developed by 

Palmer et al (US 7,570,988) [11-14]. The inversion routine is primarily MATLAB®-based and is 

called from within LabVIEW™. The routine requires 50-300ms per spectrum and is also non-

deterministic due to the fitting algorithm; margin-wide optical parameter maps can be obtained 

within seconds of raw data acquisition and can therefore be used for intra-operative settings.  

When the imaging platform is utilized, a separate imaging platform application is 

launched with execution priority equal to the main user interface; the movement cannot be 

interrupted as it will slow the physical data acquisition. Commands are received by the platform 

application through the platform command class. The imaging platform hardware is managed by 

a generic imaging platform class composed of a digital camera, a pressure sensor, and an array 

of movement axes. Similar to the spectral imaging device, the specific hardware functions are 

dynamically dispatched according to the recognized/specified hardware. A background thread 

constantly polls the pressure to ensure fine adjustments do not destabilize as a result of data 

communication lag. The platform application interprets the desired laser location placement 

based on the mouse cursor position when selecting a region of interest from an optical 

parameter map and the known scan positions. These ROIs can be chosen automatically, 

though further diagnostic algorithm development is necessary prior to this being a useful 

feature.  

 



 

Figure 1.3 Class Hierarchy. The primary core classes are the application, command, hardware, and 
measurement variable classes, grouped in a) by the spectral imaging system, the imaging platform, and 
the main user interface. The display classes in b) are grouped by software panel type and indicate the 
data display groups contained with each. The spectral data in c) is grouped by the data context and 
respective allowable data types.  

 

Part C. Clinical Study on Margin Assessment:  

In previous reports, we saw a substantial proportion of margins (1.5 on average) that presented 

as positive under pathological review. At Duke University Medical Center (DUMC) the treatment 

paradigm has significantly changed in the last two years and that number has substantially 

decreased. The complications associated with small, focal regions of cancerous cells at the 

margin edge however, remain. Moreover, these regions of positivity are unlikely to be 

discovered within the current clinical framework; pathologists typically sample lumpectomy 

specimens at 3-5mm intervals for histopathological review, leaving a substantial risk for these 

small regions to go undetected. The challenge for any intra-operative technique for breast tumor 

margin assessment is the ability to detect the signal (i.e., the histologic changes due to varying 

amounts of malignancy at the margin) over the noise (i.e., the normal inter-patient and intra-

patient variation in breast composition). If we view the range of normal tissues in the breast as a 

‘‘landscape,’’ then the challenge in margin assessment is to detect the presence of malignant 



tissue at the boundary of an otherwise ‘‘normal’’ margin, as a perturbation in that landscape. 

The clinical challenges thus warrant a device capable of both a wide coverage area as well (to 

survey the entire margin) and small feature recognition (to avoid missing focal regions of 

cancer).  

We previously reported on our first generation 49channel+scanning platform device to 

address the under-sampling/coverage obstacles, wherein optical parameter maps where shown 

for an oversampled positive and negative margin. As described in the previous section, the 

technology has extensively matured with strategic software enhancements, automatic digital 

images, precise automatic positioning, and improved form factor. The goal of these 

enhancements was to further reduce systematic and user error, improve the acquisition speed 

and thereby sampling resolution, and to elucidate the effects of resolution on the ability to detect 

small regions of disease. In this section, we extend the preliminary quantitative analysis 

presented in year 5 on a cohort of 57 patients.  

 

Methods 

Patient Data Collection  

 

Diffuse reflectance spectra were collected from excised breast tissue specimens from 57 

patients. For the purposes of this work, patients undergoing breast conserving therapy (BCT) as 

well as breast reduction surgery were recruited. Specimens (partial mastectomies and reduction 

mammoplasties) from the respective patient populations were used to compare the optical 

property values corresponding to dysplastic tissue (partial mastectomy specimens with a 

positive or close margin), normal tissue (reduction mammoplasty specimens without dysplasia), 

and additionally normal tissue in the presence of dysplasia (partial mastectomy specimens with 

negative margins). Partial mastectomy specimen orientation was determined according to 

surgically placed reference features including: a surgical wire inserted into the center of the 

tumor, colored sutures, and surgical clips. Specimen faces were defined as the faces of a cube 

and labeled relative to the specimen orientation in situ; the six measureable faces are hereafter 

referred to as the superior, inferior, posterior, anterior, medial, or lateral margin.  Reduction 

mammoplasty specimens do not have such a reference system as they are typically not sent to 

post-operative pathology for assessment.  

Immediately following the tissue resection, partial mastectomy specimens are sent to 

radiology for an intra-operative x-ray examination to verify successful removal of the intended 

tissue. Upon return, the specimen is then placed onto the pressure sensing base of the imaging 

platform and oriented accordingly. The raster-scanning procedure is initiated and diffuse 

reflectance spectra are collected across the visible spectrum (400-700nm). The pressure 

applied to the face of the specimen is dynamically controlled by a feedback loop that executes 

in parallel to the main acquisition software, such that subtle adjustments to the applied pressure 

can be made without interrupting spectrum collection. The specimen is then flipped to its 

opposing margin and the scan is initiated a second time. Once scanning is complete, a “site-

level” inking procedure is performed wherein 6- 10 sites are marked using tattoo ink  (typically 

orange in color) with the aid of a co-registration structure that physically relays the central 

location of each channel to specimen. The co-registration plate is then removed and the four 



corners of the margin are then marked with a different color ink (typically green). A certified 

pathologist uses these inked dots to provide site-level (orange dots) and gross margin level 

(green dots) histopathological correlation to the collected spectral channel data. Margin inking 

was followed by the acquisition of a digital image using an on-board digital camera mounted to 

the imaging platform. 

  

Clinical Data Processing 

Partial mastectomy specimens were measured on the posterior or anterior margins: the 

pancake-like shape of the excised tissue limited measurements to only two margins. The 

measurement order is determined ad hoc as it is not possible to measure a margin multiple 

times due to time restrictions, nor is it possible to know with certainty the margin that has the 

highest likelihood of positivity. A single margin was inked for post-operative pathological 

assessment in a uniformly spaced diamond pattern. Over the next year, sites will be inked 

according to the likelihood of being cancerous as designated by our discriminatory algorithm. 

For this patient data set, tissue optical property maps were reconstructed post-operatively using 

the inverse Monte-Carlo model discussed previously.  

A dual arm cumulative distribution function (CDF) analysis was performed at the margin 

level, including all measured samples, and at the site-level, where parameter values 

corresponded only to regions marked for histological validation. The ability of our spectral 

mapping technique to survey shifts in of the morphological features of the normal breast was 

determined by analyzing the spectral information arising from inter-patient variations in 

mammographic breast density (MBD), which further established the morphological features to 

which the hyperspectral maps are sensitive. A two-sided Kolmogorov-Smirnov statistic p-value 

was used to determine if tissue-specific optical parameter distributions were from a common 

parent distribution, effectively summarizing our ability to categorically discern tissue subtypes. A 

conditional inference tree model (CIT) previously reported by our group [15] was used to further 

stratify tissue margins high and low breast density subgroups (HBD and LBD, respectively).  

 

Patient Population 

 

The following characteristics were recorded for each patient (if available): radiographic breast 

density, menopausal status, neoadjuvant treatment status (chemotherapy or endocrine 

therapy), age, body mass index (BMI), and surgical re-excision status. For the analyses 

presented herein, data was only included from patients who had not undergone prior radiation, 

adjuvant treatment, or surgery 1) due to limited sample sizes and 2) in order to assess 

differences in surgical margin status without these additional confounding factors. For 

mammographic breast density (MBD), each patient was assigned a value based on their pre-

surgery mammogram: 1 (fatty), 2 (scattered fibrous), 3 (heterogeneously dense), or 4 

(extremely dense). MBD score of 1 or 2 was considered to be low density, while a score of 3 or 

4 was considered to be high density; the data was binned this way since the majority of the 

patients had 2’s or 3’s. 

 

Table 1.2 Patient Demographics 



# of patients included in analysis 57 

Surgical Margin Status (margins, patients) (71, 57) 

Positive 3 (4%), 3 (6%) 

Negative 38 (53%), 31(56%) 

Close (Negative) 30 (42%), 21 (38%) 

Avg. age (range) 63.8 (41-92) 

Avg. BMI (range) 29.8 (18.3 - 47.1) 

Specimen Volume (Ellipsoid) 23.0  (1.2 – 79.5) cm3 

Tumor receptor status (invasive only)  

ER +, - 40 (70%), 8 (14%) 

PR +, - 35 (61%),13 (22%) 

HER-2/neu +/- 0 (0%), 37 (65%) 

Triple negative 5 (9%) 

Menopausal Status  

Pre 8 (14%) 

Peri 0 (0%) 

Post 49 (86%) 

Breast density*  

1 9 (16%) 

2 31 (54%) 

3 15 (26%) 

4 2 (4%) 

 

Clinical Imaging 

Clinical raster-scanned images were acquired for 57 patients at an upsample rate of 8, resulting 

in 64 full frame spectral images (3136 full spectrum pixels) for each margin measured. Of the 6 

possible margins, 2 were measured (anterior/posterior) in most cases due to the pancake-like 

shape of most specimens. The ratio of [β-carotene]/µs’ has previously been established by our 

group as a valuable diagnostic parameter [15, 16].   

Results 

Data Analysis 

 

The relationship between optical parameters and benign breast tissue composition has been 

well established by our group in prior publications [15-17]. Briefly, it has been determined that 

the ratio of [β-carotene] to <µs’> decreases as the tissue changes from predominantly adipose 

tissue to predominantly fibroglandular tissue components. This manifests as a left shift of the 

empirical CDF corresponding to all pixels with a given [β-carotene] /<µs’> parameter map. 

Furthermore, the ability to quantify and distinguish these changes is greatly enhanced the 

patient population is stratified by breast density.  In this study, we sought to corroborate 



previous results using the 57 patient cohort of tissue margins. Fig. 1.4 shows representative 

margin images for a positive, HBD margin (Fig. 1.4a), a positive, LBD margin (Fig. 1.4b), a 

negative, LBD margin (Fig. 1.4c), and a negative, HBD margin (Fig. 1.4d). Shown in Fig. 1.4(e-f) 

are corresponding CDFs for the entire cohort. Note that only 3 margins were found to be truly 

positive. This is due to continually evolving standard of practice.  

 

 

 
Figure 1.4 Optical differences in breast tissue associated with density.  ,Maps of [β-

carotene]/µs’ shown for a), a positive, LBD margin, b), a positive, HBD margin, c), a negative, 

LBD margin, and d), a negative, HBD margin. Cumulative distribution functions are shown for 

e), all positive margins (n=3), all close margins (n=30), and all negative margins (n = 38), f), the 

corresponding low density margins (n = 2, 24, 30, respectively), and g), the corresponding high 

density margins (n = 1, 6, 8, respectively). Note that not all patients in the cohort had an 

associated breast density.     

 

Typically, lower [β-carotene]/µs’ values can be explained by the proportions of tissue typical to 

these breast density grades. Low density breasts are likely to have higher proportions of fatty 

tissue and therefore present with a naturally higher β-carotene concentration (thereby 

increasing the ratio). Likewise, high density breasts have higher proportions of collagen and 

glandular tissue, which manifests as an increase in the scattering signal. These effects are well 

summarized by the directional shift of the eCDFs: fatty tissue associated with the LBD margin 

has shifted the curve to right, fibrous tissue has shifted curve corresponding to the HBD margin 

to the left. Fig. 1.5 shows the eCDF trends for the entire patient cohort. Interestingly, in the case 

of the positive margins shown in Fig. 1.4, it appears that for dense breasts, the [β-carotene]/µs’ 

ratio may not be appropriate for distinguishing benign from malignant tissue regions. This is 

paralleled in clinical practice; most positive margins are observed in abnormally dense breasts 

as the tumor boundary is not macroscopically apparent[18]. 



Figure 1.5 Combined CDFs for all low and high breast density samples. Empirical 

cumulative distribution functions (eCDFs) of all margin level data for all high and low breast 

density samples.  

The Kolmogorov-Smirnov (KS) test was used to determine if these distributions are statistically 

likely to originate from a common underlying distribution. The KS test considers both the shape 

and size differences when comparing distributions, and is often used in the context of CDFs to 

quantify the distance between an empirical and a cumulative distribution function and can be 

considered a goodness of fit. HBD and LBD margins were found to be statistically different 

(p<.02) at the margin level for the cohort used in this analysis.  

We performed a similar analysis at the site level using all available pathology-confirmed 

sites from the same patient data set. Site designations with n<8 were excluded from this 

analysis due to insufficient statistical power. Of the 234 selected sites, 105 were primarily 

composed of fat (labeled adipose), 23 were a mixture of fibrous tissue and fat tissue 

(fibroadipose), 10 were a mixture fibrous and glandular tissue (fibroglandular), 71 were a 

mixture of fat and fibroglandular tissue, 8 sites included regions of DCIS 0.1-2mm from the 

margin surface, similarly 6 sites included some invasive carcinoma 0.1-2mm from the surface. 

We chose to augment our analysis of site-specific distribution dependencies by also 

investigating how these change when lower/higher resolutions are used. Figure 1.6 shows the 

site level CDFs for each of these tissue compositions at the highest and lowest resolution used 

in this study (0.75mm/6mm). 



 

 

Figure 1.6 eCDFs for all site-level data. Empirical cumulative distributions for eligible 

pathology confirmed tissue sites. a) corresponds to distributions taken with the highest 

upsample (n=8) and correspond to the best resolution (0.75mm) and, b) represents the 

corresponding distributions measured using the native probe resolution (6mm).  

 

Not surprisingly we discovered that as the adipose content is increased, the CDF tends to shift 

to the right. At the highest resolution used, each of these tissue subtypes are statistically distinct 

from one another, with the exception of fibroglandular and “carcinoma” tissues (p>.0001). 

Interestingly, adipose tissues are statistically different from fibroadipose tissues at the highest 

upsample (p<.0001) but not at the lowest, suggesting that the signal from fibrous components 

are washed out at low resolution. Similarly, fibroglandular tissue is no longer distinguishable 

from the fibroglandular/adipose mix as you decrease in resolution. Interestingly, the ability to 

distinguish “close” DCIS sites degraded with improved resolution. It is suspected that this may 

be due to the manner in which the region is selected; it may very well be the case that only a 

few pixels correspond to the truly dysplastic region while the remaining correspond to 

neighboring fat cells. This suggests that a region extraction algorithm could be used to pinpoint 

smaller regions of focal disease by locating distinct boundaries within a suspect area. The 

inability to distinguish pure fat from other tissue types suggests that sub-pixel sampling is 

imperative to accurately diagnose the margin landscape. 

 

Aim 2: Optical quantitative biology of different breast cancer subtypes.  

Part A – Duke University 

The objective of the work in Aim 2 is to use optical techniques to measure markers of the tumor 

microenvironment in women with cancers representing a wide variety of subtypes, and to 

determine whether these optical measures can be used for real time diagnosis or to predict 

eventual chemotherapy response in a subset of the patients who are measured prior to 

commencement of chemotherapy.  One such approach that we have discussed in previous 

years is to use a high resolution microendoscope (HRME) combined with a morphological stain 



called acriflavine to visualize the tissue morphology in real time. In previous years we 

demonstrated the feasibility of using the HRME for detection of residual carcinoma in the normal 

tissue milieu and validated our unique image analysis approach on preclinical murine tumor 

margin specimens and small cohort of clinical mastectomy samples. Additionally, we completed 

a large study using the HRME to capture morphologically based information from biopsy 

specimens. Last year, we continued to image biopsy specimens, identified several quantitative 

endpoints to distinguish malignant from benign tissues, and laid the groundwork to build a 

diagnostic classification model.  In year 5, we optimized our diagnostic model to yield the 

optimal separation between positive and negative biopsies. This included identifying 

endpoints/parameters that have diagnostic potential, optimizing how we summarize the data 

from each biopsy, and building predictive models that quantitatively diagnose high resolution 

images. Together, this work yielded an optimized set of tools that are capable of imaging thick 

tissue at high resolution with no tissue processing and that can automatically segment and 

quantify those specimens.  

Introduction 

Histopathology is the clinical standard for tissue diagnosis.  Pathologists examine high 

resolution images of small volumes of fixed, sectioned, and stained tissue [19]. When 

diagnosing cancer in particular, pathologists look for changes in tissue morphology including 

changes in nuclei and surrounding tissue. Nuclear changes that may indicate the presence of 

cancer include pleomorphism, increased nuclear-to-cytoplasmic ratio, increased nuclear density 

(hyperchromasia), decreased chromatin organization, and increased mitotic rate [20, 21]. 

Changes in the surrounding tissue include the presence of reactive stroma, which is composed 

of connective tissue, blood vessels, macrophages, lymphocytes, other inflammatory cells, and 

the presence of progressive infiltration, which involves the invasion and destruction of 

surrounding tissue [20, 21]. While histopathology is the gold standard, limitations include tissue 

processing, sectioning and staining the tissue, which can take 30 minutes or more for frozen 

section diagnosis and more than 24 hours for paraffin section diagnosis, and a highly trained 

pathologist to render a diagnostic evaluation.  

 

Several clinical situations could benefit from more rapid and automated histological processing, 

which could reduce the time and resources required between obtaining tissue and providing a 

diagnosis. For example, there is need for rapid detection of residual cancer on the surface of 

tumor resection specimens acquired during excisional surgeries, such as breast conserving 

surgery (BCS) [22]. Post-operative histopathologic assessment of the resected specimen is the 

current gold standard by which microscopic residual tumor in the margin is detected. Re-

excision surgery is performed if residual cancer is found at or within 2 mm of the surface of the 

excised lumpectomy specimen, in order to reduce the risk of recurrence [23]. No tools for intra-

operative margin assessment have been widely accepted. Intra-operative frozen section 

analysis and touch prep cytology are used to assess surgical margins at the time of first surgery 

at a few select high-volume centers with dedicated resources and personnel. However, these 

techniques have not been widely adopted because they require laboratory personnel to be 

present during surgery including specially trained pathologists and sometimes radiologists. An 

additional clinical scenario that could benefit from more rapid histological processing is the 



assessment of biopsy specimens at the point of care to confirm that a suspicious lesion is 

successfully sampled, preventing an unnecessary repeat biopsy procedure.  Rapid and low cost 

histological processing could also be potentially useful in settings lacking the resources 

necessary to perform standard histologic assessment [24]. For example, intermediate diagnostic 

biopsy is typically not performed between cancer screening and treatment in low and middle 

income countries (LMICs) due to the need for multiple visits (there is patient attrition with every 

clinic visit that is needed) and lack of resources [25]. The number of pathologists in LMICs is 

small, even as a percentage of the total medical workforce. For example, there are only 15 

pathologists in the entire country of Tanzania, which translates to 1 pathologist per 2.5 million 

people [25]. Technologies that enable rapid, automated, low cost histological processing could 

be placed in the hands of other health care workers, such as nurses or community health care 

workers, in order to address this unmet clinical need in LMICs.  

 

In order to enable visualization of tissue at the point-of-care, many groups have developed 

microscopy techniques including reflectance and fluorescence microscopy [26-30], confocal 

microscopy [31-35], and optical coherence tomography (OCT) [36-41] and demonstrated that 

morphological features can be detected with these approaches. While these techniques are well 

suited to enable real-time visualization of tissue morphology, quantitative image analysis is 

essential to enable objective interpretation and automated diagnosis. Towards this end, a few 

groups have combined automated nuclear morphometry and microscopy techniques to enable 

quantitative diagnosis during a procedure. For example, Nyirenda et al. applied nuclear 

morphometry to wide-field fluorescence microscopy images of a breast cancer rat model and 

found that area fraction, which is the nuclear area divided by the total area, achieved 97% 

sensitivity and 97% specificity for tumor detection [42]. Previously, our group used a high-

resolution fluorescence microendoscope in combination with a topical contrast agent called 

acriflavine to enable visualization of the microanatomical features in resected preclinical tumor 

sarcoma margins [43]. We developed a strategy for isolating acriflavine positive features (APFs) 

from the heterogeneous sarcoma margins using a technique called sparse component analysis 

(SCA) [43], which has been used in the image processing community for image compression. 

While APFs roughly correspond to nuclei, in some cases nucleic acids are concentrated within 

the nucleoli of neoplastic cells; therefore, we refer to these acriflavine positive features as APFs 

throughout this work. SCA accurately isolated APFs from images that contain tumor, muscle, 

and adipose tissue types and differences in nuclear density were used to identify pathologically 

confirmed positive tumor margins [43]. 

 

The goal of our current study was to test the robustness of our quantitative microscopy tool box 

to detect the presence of malignancy in clinical core needle breast biopsies, and to assess if this 

approach can be extended from a preclinical sarcoma model to clinical specimens for point-of-

care procedures associated with breast cancer diagnosis and/or margin resection.  A model was 

optimized on individual images for which we had a corresponding pathologic diagnosis. Then 

the model was prospectively applied to the entire biopsy panel to assess if our approach could 

be used to diagnose whole biopsy specimens. 

 

Methods 



Patient Population: This study was performed under a protocol approved by the Duke University 

Institutional Review Board (Protocol Number: Pro00008003). Eighty patients age 18 and over 

undergoing core needle breast biopsy procedures at Duke University Medical Center gave 

written consent before enrolling into the study. In addition to imaging tissue, characteristics were 

tabulated for each patient including age, body mass index (BMI), receptor status, menopausal 

status, and mammographic breast density (MBD). For MBD each patient was assigned a value 

based on their pre-surgery mammogram: 1 (fatty), 2 (scattered fibroglandular), 3 

(heterogeneously dense), or 4 (extremely dense). This demographic information is included in 

Table 2.1.  

 

Imaging system and contrast agent: A high resolution fluorescence microendoscope that has 

been described previously [44] was used to capture images of breast tissue. Briefly, the 

microendoscope contained a 455 nm light emitting diode, excitation filter, dichroic mirror, 10x 

objective, emission filter, and CCD camera. The light was directed to the sample through a 

flexible fiber bundle composed of 30,000 fibers that yielded a circular field of view of 

approximately 750 µm in diameter. The resolution of the system was approximately 4.4 µm. 

Acriflavine was selected as a topical contrast agent because it highlights tissue morphology 

seconds after being applied. Specifically, acriflavine reversibly associates with RNA and DNA, 

and has also been shown to stain collagen and muscle fibers [45, 46]. Acriflavine was dissolved 

in phosphate buffered saline solution (0.01% w/v, Sigma-Aldrich) and was topically applied to 

excised breast tissue immediately prior to imaging with the microendoscope.   

 

Imaging protocol: During core needle breast biopsy procedures several biopsies were taken 

from the suspicious area. Our research team was usually handed the first biopsy acquired, 

which typically came from the center of the suspicious lesion. This was not a research biopsy 

collected for our particular study; rather our research team intercepted the first biopsy collected 

before it was sent to the pathology laboratory. After the biopsy was acquired (typically within 10 

minutes of the procedure being performed), acriflavine was applied to the surface of the 

specimen. After 30 seconds, the distal end of the fiber bundle was placed into contact with the 

tissue and images were acquired. The biopsy was scanned length-wise by systematically 

moving the probe in 1 mm increments over the tissue surface. Once one side was scanned, the 

biopsy was rotated 180 degrees and the length-wise scanning process was repeated. In order 

to improve the accuracy and reproducibility of these movements the fiber bundle was secured in 

a custom probe holder which was mounted on an x-y translation stage. Biopsies ranged from 

10-20 mm in length and imaging took approximately 10-15 minutes to complete.  

 

After imaging was completed the surface of the specimen was inked for pathological co-

registration. In order to maintain the proper orientation for pathological evaluation, each half of 

the biopsy specimen was inked with a different color (see Figure 2.1). After imaging and inking 

were complete, the tissue was returned for standard pathologic processing, and the resulting 

H&E stained slides were reviewed by a breast pathologist (J.G.) who was blinded to the results 

of fluorescence microscopic imaging. A diagnosis was acquired for the ends of each biopsy (the 

last 1 mm, which we refer to as the site level diagnosis) as well as for the middle portion of each 

biopsy   (the central 8-18 mm, which we refer to as the biopsy level diagnosis). Since each end 



of the biopsy was imaged twice, 4 images were acquired of the ends for each biopsy specimen. 

The middle portion of the biopsy ranged from 8-18 mm. Since images were acquired every 1 

mm and the middle portion was also imaged twice, between 16 and 36 images were acquired of 

the middle portion of each biopsy specimen.  

 
Figure 2.1. Illustration of imaging and inking protocol. First acriflavine was topically applied to 

the biopsy, and side 1 was imaged by moving the probe in 1 mm increments along the length of 

the biopsy. Then the biopsy was flipped 180 degrees, and side 2 was imaged in 1 mm 

increments. Next the biopsy was inked with two colors – for example, green ink was applied on 

the left side, and orange ink was applied on the right side. Then the biopsy was submitted for 

H&E processing and a three-part diagnosis was given – one diagnosis for each end (the last 1 

mm, which we refer to as the site level diagnosis), and another aggregate diagnosis for the 

middle component (the center 8-18 mm, which we refer to as the biopsy level diagnosis).  

 

Site level analysis: In order to develop a model to distinguish between positive and negative 

biopsies, a site level analysis was performed where each inked site had co-registered 

pathologic diagnosis. Specifically, the images that are located at the ends of each biopsy for 

which we have specific pathology diagnoses were examined in order to establish expected 

trends in diameter and density. A total of 80 patients were recruited for this study. However, 5 

patients were used for a feasibility study prior to 2011. 8 patients were counted as screen fails 

because they became ineligible after consenting to the study. 8 patients were excluded from the 

study due to various logistical issues. In total our study team was able to successfully image 59 

biopsy specimens with a corresponding pathologic diagnosis, 5 of which were stereotactic core 

biopsies and 54 of which were ultrasound guided core needle biopsies. For our analysis, the 5 

stereotactic biopsies were removed from the data set because the samples were extremely 

fatty. This information is summarized in Figure 2.2. 



 

In total, our group imaged 54 ultrasound guided biopsies for which a pathological diagnosis was 

obtained (see Figure 2.2), and since each of the 108 ends were imaged twice (as illustrated in 

Figure 2.1), this yielded 216 total images. However, a diagnosis for several specimens could not 

be acquired due to fragmentation of the biopsy or lack of ink. Due to a lack of diagnosis, 19 

biopsy ends which corresponded to 38 images were lost. Additionally, only ends of the biopsies 

that were consistent with the biopsy (middle) level diagnosis were retained for further analysis.  

For example, many biopsies that contained invasive ductal carcinoma (IDC) had ends that 

contained adipose or fibrous tissue. The relevant pathology (such as IDC) always resided in the 

middle of the biopsy; there were no cases in which the ends were positive and the middle was 

negative Because the biopsy tissue was elastic and easy to expand and contract during 

imaging, we could not ensure that these images were truly negative; therefore these sites were 

removed. In total 26 biopsy ends, which corresponded to 52 images were removed because the 

ends of the biopsies were inconsistent with the biopsy level diagnosis.  The remaining images 

were reviewed for quality control. Images were removed from the data set if there was little to no 

acriflavine staining present or the image was out of focus. Based on these criteria, 60 images 

were removed because they had little to no staining and 14 images were removed because they 

were out of focus. This yielded 52 quality images with a corresponding site level pathology 

diagnosis. Details of the exclusion criteria listed above are summarized in Figure 2.2.  



 
Figure 2.2. Inclusion criteria for site level training data set and biopsy level validation data set.  

 

Acriflavine positive features (APFs) were segmented through applying a technique called sparse 

component analysis (SCA), which has been described previously [43]. All image processing and 

analysis was completed in MATLAB (2013b, Mathworks Inc., Natick, MA). First, images were 

cropped in order to discard the rim of the fiber bundle. Additionally, a low pass Gaussian filter 

was applied to remove the fiber core pattern that was superimposed onto the images. Next, 

SCA was used to separate APFs from muscle and adipose structures in heterogeneous images. 

After SCA was applied to isolate APFs, the circle transform (CT) was applied to compute the 

size and density of APFs. CT was chosen to quantify variables because it detects approximately 



circular objects (i.e. APFs), can distinguish overlapping circular APFs, and is easy to tune [47].  

 

Next, variables were calculated from segmented images. Variables were designed to capture 

disease features typically seen in H&E stained slides, such as increased nuclear density or 

nuclear pleomorphism (the variation in size and shape of nuclei) [20, 21]. Specifically, variables 

include density of APFs (the number of APFs in a unit area), area fraction (the total APF area 

divided by the total area), minimum inter-nuclear distance (the distance between the center of 

an APF and the center of the next closest or nearest neighboring APF), and diameter (the 

output given by CT). Density and area fraction (AF) represent scalar variables – only one value 

is returned for each image, while the minimum internuclear distance (IND) and diameter 

represent vector variables – a value is calculated for each APF in the image. In order to 

consolidate the vector variables into a scalar value, the mean IND and mean diameter were 

calculated for each image.  

 

Different combinations of the variables described above were investigated through using the site 

level data set to evaluate performance of the different multivariate models. Multivariate models 

were based on logistic regression in the SAS programming environment. For each model, 

receiver operator characteristic (ROC) curves were constructed for the site level data set using 

a web-based tool [48]. The area under the curve (AUC) associated with each ROC curve was 

tabulated. Additionally, the cross-validated probabilities for each image were determined in SAS 

using leave one out cross-validation and then used to construct a cross-validated ROC curve. 

 

Biopsy level analysis: The models developed using the site level data set were applied to the 

biopsy panels listed in Figure 2.2 and Table 2.3. Biopsy panels consisted of the images in the 

central 8-18 mm (as illustrated in Figure 2.1), and did not include the ends (the last 1 mm), 

which were used exclusively in the site level analysis described above. The probability that each 

image was malignant was determined by applying the models. The number of images that had a 

probability of greater than or equal to chance (50%) was tabulated and used to create ROC 

curves. The model that yielded the highest AUC for the biopsy data set was selected and used 

to examine which biopsies were correctly and incorrectly classified. A cut point on the ROC 

curve was selected based on the quantity F = (1-sensitivity)2+(1-specificity)2, which is minimized 

at the optimal sensitivity and specificity. 

 

Results 

Demographic information: The breakdown of the 54 ultrasound guided biopsies specimens 

imaged in this study is shown in Table 2.1. Of the 54 biopsies, 23 were malignant and 31 were 

benign specimens. The 23 malignant cases were comprised of 20 invasive ductal carcinomas 

(IDC), 2 invasive lobular carcinomas (ILC), and 1 ductal carcinoma in situ (DCIS). Of the 31 

benign biopsies, 2 contained primarily adipose or fibroadipose tissue, 21 contained primarily 

fibroglandular, fibrous, or glandular tissue, 6 were either fibroadenomas or papillomas and 2 

contained other benign pathologies including a lymph node and a hematoma.  

 

Table 2.1. Patient Demographics. 

Characteristic Biopsies 



# of patients included in analysis 54 

Primary histology 54 

Malignant and premalignant 23 (42.6%) 

     Invasive ductal carcinoma (IDC) 20 (37.0%) 

     Invasive lobular carcinoma (ILC) 2 (3.7%) 

     Ductal carcinoma in situ (DCIS) 1 (1.9%) 

Benign 31 (57.4%) 

     Adipose, fibroadipose 2 (3.7%) 

     Fibroglandular, fibrous, glandular 21 (38.9%) 

     Fibroadenoma, papilloma 6 (11.1%) 

     Other (lymph node, hematoma) 2 (3.7%) 

Avg. age (range) 53.1 (19 - 85) 

Avg. BMI (range) 31.5 (17.6 – 61.7) 

Tumor receptor status (invasive only)  

ER +, - 16 (72.7%), 6 (27.3%) 

PR +, - 15 (68.2%), 7 (31.8%) 

HER-2/neu +/- 2 (9.1%), 20 (90.9%) 

Triple negative 5 (22.7%) 

Menopausal Status  

Pre 19 (35.2%) 

Peri 1 (1.9%) 

Post 34 (63.0%) 

Breast density*  

1 1 (2.1%) 

2 18 (37.5%) 

3 24 (50.0%) 

4 5 (10.4%) 

*Breast density was acquired for 48 out of 54 patients since 6 mammograms were taken at 

other institutions.  

 

Site level analysis: Table 2.2 shows how many images fell into each pathological category for 

the site level images. A total of 52 sites were imaged which included 14 malignant and 

premalignant sites and 38 benign sites. The 14 malignant sites included 12 IDC and 2 DCIS 

images. The benign sites were comprised of 15 adipose and fibroadipose images, 20 

fibroglandular, fibrous, and glandular images, and 3 fibroadenoma or papilloma images.  

 

Table 2.2. Site level data set 

Primary histology Sites 

# of sites 52 

Malignant and premalignant 14 (26.9%) 

     Invasive ductal carcinoma (IDC) 12 (23.1%) 

     Ductal carcinoma in situ (DCIS) 2 (3.8%) 

Benign 38 (73.1%) 

     Adipose, fibroadipose 15 (28.8%) 



     Fibroglandular, fibrous, glandular 20 (38.5%) 

     Fibroadenoma, papilloma 3 (5.8%) 

 

Representative images taken from the site level data set are shown in Figure 2.3A. Images of 

the corresponding H&E sites are shown in column 1. While H&E images and fluorescence 

images were acquired from approximately the same region of the biopsy, exact co-registration 

was not possible due to pathologic processing. Images acquired with the high resolution 

microendoscope are shown in column 2. For visualization purposes, APFs that were larger than 

7 µm in diameter were false colored red and APFs that were less than or equal to 7 µm in 

diameter were false colored green and overlaid onto the original image (column 3). The 

threshold of ‘7 µm’ was chosen because APFs smaller than the threshold are likely to 

correspond to nucleoli, while APFs larger than the threshold are likely to correspond to nuclei 

[49]. Specifically, others have found that nuclear volume of human breast cancer cell lines 

ranged from approximately 200 to 1500 µm3 while nucleolar volume ranges from 5-170 µm3 

[49]. If the assumption is made that nuclei and nucleoli are approximately spherical, this 

corresponds 7-14 µm in diameter for nuclei and 2-7 µm in diameter for nucleoli, suggesting that 

threshold of ‘7 µm’ may lead to some separation between nuclei and nucleoli. The resolution of 

our system is 4.4 µm; thus, our system can resolve nuclei and larger nucleoli in the range of 5-7 

µm.  



 
Figure 2.3. Application of sparse component analysis (SCA) and circle transform (CT) to 

representative images of adipose, fibroadipose (FA), fibrous, ductal carcinoma in situ (DCIS), 

and invasive ductal carcinoma (IDC) are shown in A-E respectively. Images of the 

corresponding H&E site are shown in column 1. The original images are shown in column 2. An 

overlay is shown in column 3 in which the smaller acriflavine positive features (APFs) (<7 µm 

diameter) are false colored green and the larger APFs (≥7 µm diameter) are false colored red. 

The background was dimmed to enhance visualization in the overlay. Both scale bars are 200 

µm. 

 



Figure 2.4A-C shows boxplots of density, area fraction (AF), and average inter-nuclear distance 

(IND), calculated from malignant (n=14), adipose and fibroadipose (n=18), fibroglandular, 

fibrous, and glandular (n=20), and fibroadenoma and papilloma (n=3) images. Density, AF, and 

average IND were calculated for all APFs, smaller APFs (green), and larger APFs (red). As 

expected, each density and AF boxplot reflected higher concentrations of APFs for the 

malignant compared to the benign tissue types. The density of the smaller APFs (green) yielded 

the most significant difference between malignant and benign images (p = 1.8 x 10-6). Similarly, 

AF and average IND of the smaller APFs (green) led to the most significant differences between 

malignant and benign images. No significant differences in average diameter were seen 

between malignant and benign images (p = 0.54); therefore, diameter was not included in 

subsequent analysis.  

 
Figure 2.4. Variables calculated for the site level data set. Variables were calculated from 14 

malignant (Mal), 18 adipose and fibroadipose (Adi/FA), 20 fibrous (Fib) images, and 3 

fibroadipose and papilloma (F/Pap) images. Boxplots were created for the density, area fraction 

(AF), and average internuclear distance (IND), and are shown in A-C respectively. Calculations 

were completed for all APFs, smaller APFs (green), and larger APFs (red) and are shown in 

columns 1-3 respectively. P values calculated from Wilcoxon rank sums are shown in each 

boxplot. All p values less than 0.05 are considered significant.   

 

ROC curves for the top two performing models are shown for both the original model and for 

cross-validation in Figure 2.5A and B. The model density (green) + AF (green) achieved the 



highest AUC for both the original model (AUC = 0.95) and for the cross-validated model 

(Crossval AUC = 0.93). No additional improvement in performance was gained by using all 

three variables – density (green) + AF (green) + IND (green). The optimal cutpoint on the cross-

validation density (green) + AF (green) curve in Figure 2.5A yielded a sensitivity of 86%, 

specificity of 89%, and overall accuracy of 88%. In total, there were 12 true positive (TP), 2 false 

negative (FN), 34 true negative (TN), and 4 false positive (FP) images. FP images included 1 

adipose and 3 fibrous sites, while both FN images were IDC.   

 

 
Figure 2.5. Multivariate models developed based on the site level data set. The top three 

performing variables from Figure 2.4 were used to create different multivariate models. ROC 

curves of the top two performing models are shown in A and B. Each ROC plot contains the 

ROC curve associated with the original model as well as with cross-validation. The area under 

the curve for the original model (AUC) and the AUC associated with cross-validation (Crossval 

AUC) are shown on each plot. The density, AF, and average IND of the smaller APFs (green) 

are referred to as Density (green), AF (green), and IND (green) respectively.    

 

Biopsy level analysis: Table 2.3 shows how many images fell into each pathological category for 

the biopsy level analysis. For this analysis, the 2 biopsies from the other benign category were 

removed (which included a lymph node and hematoma) since only one sample was acquired of 

each of these rarer pathologies and no conclusions could be drawn. This decreased the total 

number of biopsies panels from 54 to 52.   

 

Table 2.3. Biopsy level data set 

Primary histology Biopsies 

# of biopsies 52 

Malignant and premalignant 23 (44.2%) 

     Invasive ductal carcinoma (IDC) 20 (38.5%) 

     Invasive lobular carcinoma (ILC) 2 (3.8%) 

     Ductal carcinoma in situ (DCIS) 1 (1.9%) 

Benign 29 (55.8%) 

     Adipose, fibroadipose 2 (3.8%) 

     Fibroglandular, fibrous, glandular 21 (40.4%) 



     Fibroadenoma, papilloma 6 (11.5%) 

 

Figure 2.6 shows a representative example of a malignant and benign biopsy from our study. 

Each side of the biopsy was scanned length-wise—side 1 corresponds to the left column and 

side 2 corresponds to the right column. A summary diagnosis was given for the middle portion 

each biopsy (the central 8-18 mm), which we refer to as the biopsy level diagnosis. The 

malignant example in Figure 2.6A contains IDC and fibrous tissue and the benign example in 

Figure 2.6B contains fibroglandular and adipose tissue. The probability that each image is 

positive according to the density (green) + AF (green) model is listed in the upper left hand 

corner on each individual image. Probability values range from 0 to 1. 



 
Figure 2.6. The application of an algorithm based on SCA+CT applied to representative biopsy 

panels. A representative positive and negative breast biopsy panel are shown in A and B 

respectively. Each side of the biopsy was scanned length-wise—side 1 corresponds to the left 

column and side 2 corresponds to the right column. Images are shown as an overlay in which 

the smaller acriflavine positive features (APFs) (<7 µm diameter) are false colored green. The 



larger APFs were not included in the overlays because they are not part of the optimized model. 

The background was dimmed to enhance visualization in the overlay. The probability that each 

image is positive (according to the density (green) + AF (green) model) is listed in the upper left 

hand corner on each individual image. Scale bar is 200 µm. 

 

As seen, each image in the representative biopsy panels in Figure 2.6 has a probability value of 

being malignant. In order to consolidate all of the probability values into a single variable, the 

number of images in each biopsy panel that had a probability of greater than or equal to chance 

(50%) was tabulated. For example, the biopsy in Figure 2.6A contains 14 probability values, 11 

of which are greater than 0.50 (or 50%). The number of images for each biopsy panel (11 in 

previous example) was used to create ROC curves, which are shown in Figure 2.7. Specifically, 

the number of images was varied from 0 to 11 images (which was the highest value achieved 

for the 52 biopsies) to generate the ROC curves. As seen, the AUC associated with density 

(green) + AF (green) achieved the highest performance (AUC = 0.81). The optimal cut point on 

the ROC curve in Figure 2.7A yielded 17 TP, 6 FN, 24 TN, and 5 FP resulting in a sensitivity of 

74%, a specificity of 83%, and overall accuracy of 79%. Of the 6 FN biopsies, 1 contained a 

small amount of DCIS, 4 contained IDC, and 1 contained ILC. Of the 5 FP biopsies, 3 fell into 

the fibrous category, 1 into the adipose/fibroadipose category, and 1 was a fibroadenoma. Two 

of the FP biopsies contained notable amounts of fibrosis or fibrous tissue, 1 contained 

inflammation dense inflammatory infiltrate, and 1 contained notable amounts of fat necrosis.   

 

 

 
Figure 2.7. Models applied to biopsy level data set. The receiver operator curves (ROCs) for the 

top two performing models are shown in A and B. The area under the curve (AUC) is shown on 

each plot.  

 

Discussion: 

In this study, we demonstrate that fluorescent microscopic imaging of acriflavine stained tissue 

combined with an algorithm that leverages SCA+CT provides a rapid, non-destructive and 

automated strategy for quantitative pathology of heterogeneous, fresh, core needle biopsies.  

The primary source of contrast in this study was the density of the smaller APFs, AF of the 

smaller APFs, and average IND of the smaller APFs. Specifically, the density of smaller APFs 



(green) + AF of the smaller APFs (green) achieved the highest AUCs on the site level testing 

set (AUC = 0.93). As expected there were higher density values and AF values for positive 

images and lower average IND values for positive images (Figure 2.3). This trend was also 

seen in our previous work in which the density of the smaller features led to more significant 

differences between positive and negative images of excised preclinical sarcomas [43]. The 

density of the smaller APFs likely provides more contrast between malignant and benign images 

because nucleic acids are highly concentrated within the nucleoli of malignant cells while they 

are more diffuse within benign cells. For example, the presence of prominent or multiple nucleoli 

is associated with a high nuclear grade, which has been shown to correlate with the aggressive 

potential of breast carcinomas. Thus, malignant regions or images are likely to contain a larger 

amount of the smaller APFs.  

 

A significant strength of this approach is no additional tuning or optimization of SCA+CT is 

required when transitioning the application from preclinical sarcoma margin images to clinical 

core needle breast biopsies. Thus, this work demonstrates that this methodology can be easily 

applied to a variety of different organ sites where point of care quantitative pathology would be 

useful. For example, this rapid low-cost approach may be useful to provide rapid histologic 

assessment in regions where traditional pathology techniques are unavailable. Specifically, this 

approach could be used to evaluate the adequacy of core needle biopsies immediately after the 

tissue is acquired and provide a preliminary diagnosis at the point-of-care. Another strength of 

this study is that we were able to image the first core biopsy, which typically came from the 

center of the suspicious mass in the patient. Ultimately this allowed us to acquire a high yield of 

malignant images in our data set. Additionally, our study did not require removing additional 

tissue from the patient (as would be the case if our study required taking a separate research 

biopsy).  

 

However, since we merely intercepted the tissue between the biopsy procedure and the 

pathology laboratory, the tissue that we imaged and inked had to be placed in formalin with the 

other biopsies (in order to follow standard biopsy pathology protocols). Often this resulted in 

fragmentation of the tissue, which prevented our research team from acquiring a three prong 

pathology diagnosis. For example, if the ends of a biopsy broke off in the vial with the other 

biopsies, then we did not acquire a diagnosis for the ends of the biopsy (rather we only acquired 

a diagnosis for the middle portion of the biopsy). Additionally, we found that it was difficult to 

acquire high quality images of the ends of the biopsies with our device because the tissue was 

extremely thin and difficult to get in focus. Consequently, we could not use many of the images 

at the end of the biopsies in our site level data set. To increase the yield of high quality site level 

images, future studies could employ alternative inking strategies. For example, the middle 

portion of the biopsy, which is most likely to contain malignant tissue, could be inked with a 

different color. This approach could increase the yield and quality of malignant images in the 

site level data set.  

 

A similar distribution of FPs and FNs was seen in the site level and biopsy level data set. 

Specifically, the site level FPs contained 1 adipose image and 3 fibrous images. Similarly, the 

biopsy level FPs contained 1 adipose/fibroadipose biopsy, 3 fibrous biopsies, and 1 



fibroadenoma biopsy. As seen, fibrous tissues are the largest source of FPs for both the site 

level and biopsy level data sets, likely because fibrous tissues can be highly cellular and difficult 

to distinguish from malignant tissue types. The addition of the fibroadenoma as a FP in the 

biopsy level data set is not surprising – fibroadenomas are characterized by cellular stroma, 

whose density is also difficult to distinguish from malignant tissue types. The site level FNs 

included 2 IDC images, and the biopsy level FNs contained 4 IDC, 1 DCIS, and 1 ILC biopsy. 

As seen, IDC was the largest source of FNs for both the site level and biopsy level data sets. 

Interestingly, the 4 IDC and 1 ILC biopsies that were misclassified were embedded in fibrous 

tissue, which resulted in hazy images and likely prevented detection of APFs. The DCIS biopsy 

only contained focal DCIS in 2 ducts while the remainder of the biopsy contained fibroadipose 

tissue; thus, small changes in density were likely missed by our model. Performance slightly 

decreased from the site level data set (sensitivity = 86%, specificity = 89%) to biopsy level data 

set (sensitivity = 74%, specificity = 83%). This decrease in performance is likely due to the 

heterogeneity that is present in the biopsy level data set. Specifically, the site level data set 

contains individual images that each have a circular field of view of approximately 750 µm in 

diameter. Therefore, individual images are likely to only contain a single tissue type. 

Conversely, biopsy panels (which are comprised of the central 8-18 mm of the biopsy) are more 

likely to contain different tissue types. While each biopsy panel was categorized as IDC, ILC etc 

based on their primary diagnosis, other tissue types are often present. Additionally, there may 

be differing amounts of IDC or ILC, which was not quantified in the pathological diagnosis. Thus, 

there is more heterogeneity present in the biopsy level data set, which led to a slight decrease 

in the performance of the model.   

 

In previous work we found that SCA+CT performance varies with contrast between the APFs 

and background fluorescence [43]. One shortcoming from the work shown here is that the 

fluorescence microendoscope collects light from several cell layers, which contributes to 

significant background fluorescence [44]. This can lead to hazy images, which directly affects 

our ability to segment APFs in our images. The ability to segment APFs with SCA+CT could be 

improved through leveraging optical sectioning techniques, such as confocal microscopy or 

structured illumination microscopy (SIM). While confocal microscopy can achieve high spatial 

resolution (<1 µm), the need for beam scanning limits the volume of tissue that can be surveyed 

in a given amount of time and ultimately limits it translatability to the clinical practice.  SIM has 

been shown to perform equivalently to confocal microscopy with respect to optical sectioning 

and SNR, particularly in superficial tissues [50-52].  However, SIM has the added advantage of 

full-field illumination and non-descanned detection, thus lowering the complexity compared to 

confocal scanning systems, and increasing the speed with which microscopy of large tissue 

areas can be performed. Thus, SIM in combination with appropriate segmentation algorithms 

could be leveraged to image large areas of tissue at high resolution and provide quantitative 

information in a clinically relevant time window.  

 

Conclusions:  

In conclusion, acriflavine staining and fluorescence microscopy combined with SCA+CT can be 

used to quantitatively diagnose breast disease. Together, this work yields an optimized set of 

tools that are capable of imaging tissue at high resolution with no tissue processing and that can 



automatically segment and quantify those specimens. Ultimately, this platform provides a 

potentially useful adjunct to histopathological techniques by providing quality control at the point 

of care setting.   

 

Plans for year 6:  

During year 6, we plan to publish the diagnostic model described above, which yielded the 

optimal separation between positive and negative biopsies. Together, this work will yield an 

optimized set of tools that are capable of imaging thick tissue at high resolution with no tissue 

processing and that can automatically segment and quantify those specimens.  

 

Part B – Rice University 

While the analysis shown in Part A above shows an optimized approach to quantify positive and 

negative biopsies imaged with the HRME, we also wanted to explore how higher resolution 

microscopes, such as a fluorescent confocal microscope, could be used to visualize ductal 

morphology in addition to nuclear morphology. Towards this end, we partnered with Rice 

University to acquire confocal images of resected breast tissue and developed computerized 

algorithms to segment and quantify nuclear and ductal parameters to further enhance our ability 

to characterize breast architectural features. 

 

Introduction: 

In order to characterize quantitative criteria to classify breast architecture, several studies have 

described segmentation algorithms based on nuclear [53-57] and ductal [58-60] morphometry in 

images of fixed tissue stained with hematoxylin and eosin (H&E) staining. Additionally, some 

recent studies evaluated nuclear morphometric parameters using wide-field fluorescence 

microscopy [42] and micro-optical computed tomography [49] to acquire images of breast 

tissue. Specifically, wide field fluorescence microscopy combined with watershed segmentation 

to quantify nuclei found that area fraction could distinguish between tumor and normal regions in 

excised rat mammary tissue with 97% accuracy [42]. Micro-optical computed tomography and 

nuclear morphometry was used to compare variations between human breast cell lines and 

found that nuclear volumes increased from normal to metastatic breast cells and that nuclei of 

abnormal cells  contained more nucleoli [49].  

 

The idea of establishing quantitative criteria on fixed tissue can be taken one step further to be 

applied directly to intact specimens using other imaging modalities, which can obviate the need 

for extensive tissue processing. Several studies have already described the feasibility of 

imaging breast tissue with confocal microscopy in a clinical setting, [61-66]. Schiffhauer and 

colleagues showed that confocal reflectance microscopy could be used to image benign and 

malignant breast features and provide visual similarity to H&E micrographs [63].  Abeytunge and 

colleagues demonstrated that confocal fluorescence microscopy can be used to rapidly acquire 

images of fresh tissue specimens between 1-2.5 cm2 in size [63]. Kortum and colleagues 

recently showed that confocal fluorescence microscopy yields images with sufficient detail to 

identify benign and malignant breast architecture in freshly-excised tissue [61]. In another recent 

study, Kortum et al. demonstrated that confocal fluorescence images can be used to estimate 



percent tumor cellularity in core needle biopsy specimens and can indicate the adequacy of 

procured tissue for diagnosis and ancillary molecular and immunophnenotypic studies [62].  

 

The goal of this work is to combine both quantitative image processing techniques with optical 

microscopy of intact breast tissue specimens for interpretation of breast tissue at the point of 

care. The benefits of this approach are minimal tissue processing, rapid diagnosis, and 

quantitative criteria that could potentially reduce the subjectivity with intra- and inter-observer 

variation in the evaluation of breast histology. In this study, we combine clinical confocal 

microscopy with a computerized image processing algorithm to quantify both nuclear and ductal 

morphology of breast tissue; we develop an algorithm using these parameters to classify breast 

tissue as benign or malignant. Although previous studies have described evaluation of breast 

architecture in histologic images [53-60], these studies only considered either nuclear or ductal 

parameters. We show that combining both yields improved diagnostic performance, particularly 

in the diagnosis of invasive ductal cancer (IDC) and ductal carcinoma in situ (DCIS). The APF 

and ductal parameters described in this study could potentially be used for objective 

categorization of breast lesions.  

 

Methods 

Breast Tissue Acquisition and Preparation: Fresh human breast tissue specimens were 

acquired through a protocol approved by The University of Texas MD Anderson Cancer Center 

and Rice University Institutional Review Boards. Fresh breast tissue was acquired from patients 

undergoing surgery to excise a clinically abnormal lesion. The procedure for tissue preparation 

has been described previously [61]. In brief, two tissue specimens - one grossly abnormal and 

one grossly normal in appearance were acquired from each patient for image acquisition and 

evaluation; each specimen measured approximately 15 x 15 mm2 in size, with thickness varying 

from 2-7 mm. Within 30 minutes of surgical excision, breast tissue specimens were stained for 

one minute in a solution of 0.01% acriflavine in 1X phosphate buffed saline (PBS). Acriflavine is 

a nuclear contrast agent [67, 68], which has been used to stain breast tissue, oral mucosa, 

Barrett’s esophagus, cervical tissue, and sarcoma in previous studies [43, 61, 62, 69-73]. 

Following topical application of acriflavine, specimens were washed with 1X PBS and then 

immediately imaged.  

 

Image Acquisition and Evaluation: Confocal fluorescence images were acquired from multiple 

sites within each specimen using a multi-wavelength scanning confocal microscope (Vivascope 

2500®, Caliber Imaging and Diagnostics) as described previously [61, 62, 74]. Following topical 

application of acriflavine and the PBS wash, each tissue specimen was positioned on the 

microscope stage and imaged using 2.1 ± 0.4 mW power at 488 nm laser excitation, and the 

fluorescence was detected in a band pass of 550 ± 44 nm with a 30x water immersion lens.  At 

these settings, the lateral and axial resolution was 1.0 μm and 5.0 μm, respectively, in the 

center of the 750 x 750 μm2 field of view. A 12 x 12 mm2 composite image was created for both 

sides of each tissue specimen. To create the composite image, images were acquired from 

contiguous sites in a grid pattern (maximum area 12.2 x 12.2 mm2 ) over the surface of the 

specimen at an approximate depth of 20 μm.. Following image acquisition, specimens were kept 



moist in 1X PBS and were submitted for routine histologic preparation and fixation. Samples 

were stained with H&E and fixed on microscope slides for histologic assessment.  

 

A board-certified, breast pathologist (author S. Krishnamurthy) viewed composite confocal 

images and fixed tissue specimens stained with H&E using a conventional light microscope  to 

identify sites that corresponded to the same approximate location in the specimen based on 

similar image morphology. Specifically we selected in-focus confocal microscope fields of view 

that contain representative examples of characteristic benign and malignant breast features.  

Thus, at each site, a corresponding pair of confocal and H&E images were available from a 750 

μm x 750 μm field of view. At each site, the H&E images of fixed tissue specimens were used 

as a reference standard to identify breast architectural features that should be present in 

corresponding confocal images [61, 75]. Benign breast features identified in reference H&E 

images included adipose and fibrous tissue, lobules, non-hyperplastic ducts, and ductal 

hyperplasia. Malignant breast features identified in reference H&E images included: ductal 

carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), and invasive lobular carcinoma 

(ILC).  

 

Segmentation and Connected Components Algorithms for Identifying APFs: Initial results from 

applying SCA+CT to confocal images (data not shown) indicate that SCA+CT may not be the 

optimal approach for segmenting APFs from confocal images. Therefore, an additional 

approach for image segmentation was investigated. Many approaches for nuclei or cell 

segmentation exist; however, nuclei segmentation remains a challenge due to the complexity of 

images that have varying levels of contrast and non-uniform background heterogeneity. 

 

In 2004 Matas described a technique for detecting regions (i.e. APFs) in an image that remain 

stable over a range of threshold values called maximally stable extremal regions (MSER) [76]. 

The MSER method has important characteristics that are useful for the segmentation of objects 

(i.e. APFs) from complex (i.e. heterogeneous) images. In particular, MSER is not sensitive to 

pixel intensity changes and non-uniformities in background intensities because it is only 

dependent on pixel intensities within maximally stable extremal regions [77]. The feasibility for 

MSER for detecting cultured cells was recently demonstrated by Arteta et al [78]. Additionally, 

MSER has been used to detect cells in phase-contrast images [77].  

 

In order to apply MSER to the confocal images of breast tissue, five tuning parameters 

associated with MSER were selected. The first two parameters, which included the minimum 

area (MinArea) and maximum area (MaxArea) of the connected components, are related to the 

expected size of APFs. These parameters were selected based on the biologically expected 

range of nuclear diameters. Specifically, other groups have found nuclear volume to range from 

approximately 200 to 1500 µm3, which corresponds to 7 to 14 µm in diameter [49]. Therefore, 

MaxArea was set to 500 pixels, which corresponds to 19 µm in diameter, which is larger than 

the expected nuclear size for our images. MinArea was set to 35 pixels, which corresponds to 5 

µm in diameter, which is smaller than the expected nuclear size for our images. The next set of 

parameters is related to the intensity thresholds and includes maximum variation 

(MaxVariation), minimum diversity (MinDiversity), and Delta. These intensity parameters were 



systematically tuned through applying a range of values to representative images in order to 

select the best value for each parameter. Specifically, one input parameter was varied over a 

wide range while other input parameters were held constant. For each iteration, the area 

fraction (AF) from representative images of tumor and normal tissue was calculated and 

overlays of the features isolated with that particular setting were displayed. The values that led 

to the largest differences in AF between tumor and normal tissues, while isolating features that 

approximately corresponded to nuclei or nucleoli, which we refer to as acriflavine positive 

features (APFs), were selected. Specifically, MaxVariation was set equal to 2.5, MinDiversity to 

0.5, and Delta to 6.  These parameter values are in terms of relative intensity, which for our 8 bit 

images ranges from 0 to 255.  

 

After APFs were isolated with MSER, a connected components algorithm was applied in order 

to calculate parameters such as the density and diameter of APFs. In the connected 

components algorithm, all touching or connected pixels are assumed to belong to the same 

APF. Parameters include APF density (the number of APFs in a unit area), area fraction (the 

total APF area divided by the total area), minimum inter-APF distance (the distance from an 

APF center to the next closest APF center), and APF diameter (the length of the major axis of 

each APF). APF density and area fraction (AF) represent scalar variables – only one value is 

returned for each image, while the minimum inter-APF distance (IND) and APF diameter 

represent vector variables – a value is calculated for each APF in the image. In order to 

consolidate the vector variables into a scalar value, several summary statistics were evaluated, 

including mean, median, mode, interquartile range, and standard deviation.  

 

Ductal segmentation algorithm and quantification of ductal parameters: An algorithm was 

developed to measure ductal parameters, which segments non-hyperplastic ducts, ductal 

hyperplasia, and DCIS lesions based on the intensity of acriflavine staining. An illustration of 

both the APF and ductal segmentation is shown in Figure 2.8. To reduce noise and increase 

image contrast, a Wiener lowpass filter was first applied followed by contrast-limited adaptive 

histogram equalization (CLAHE). Images were converted from grayscale to binary using a user-

defined threshold based on relative intensity. The mean threshold used to segment ducts was 

107 ± 27 (range: 52-168) on a scale of 0 to 255 for 8 bit images. It was not possible to select a 

universal threshold, because in order to accurately segment ducts from surrounding tissue, it is 

necessary to isolate both nuclei in the duct walls and inter-nuclear space between them. The 

relative intensity of these features differed between images due to the variation in illumination 

power used for image acquisition and the variation in acriflavine staining. Areas smaller than the 

upper threshold for APFs (approximately equivalent to 280 μm2  or 500 pixels, with a diameter of 

19 μm [79]) were removed to avoid segmenting individual APFs outside of the duct walls. 

Individual ducts were manually segmented using a user-defined polygon selection tool to define 

architectural features corresponding to breast ducts. After application of the ductal segmentation 

algorithm, the binary confocal image showed the segmented duct walls and the outer and inner 

boundaries of the duct used to measure ductal parameters. 



 
Figure 2.8. Algorithms for APF (A-D) and ductal (E-L) segmentation. APF segmentation: A: Raw 

image acquired from confocal fluorescence microscope with 750 x 750 µm2 field of view. B: 

Region of interest selected in confocal fluorescence image with 75 x 75 µm2 field of view. C: 

The maximally stable extremal regions (MSER) algorithm applies thresholds from 0 to 255 to B. 

D: At each threshold, the MSER algorithm identifies APFs as connected components and 

selects “maximally stable” components with the lowest size variation. Ductal segmentation: E: 

Raw image acquired from confocal fluorescence microscope with 750 x 750 µm2 field of view. F: 

Wiener low pass filter and adaptive histogram equalization applied to E. G: The algorithm 

converts E to a binary image using an interactive threshold tool. H: Objects below range of APF 



area are removed and then user selects a region of interest (ROI) around ducts with an 

interactive polygon selection tool. I: The algorithm fills boundaries of ducts identified in H to 

segment the outer boundaries of the duct. J: The algorithm selects the complement of H to 

segment the inner boundaries of the duct (lumen). K: Duct wall width is measured by selecting 

the shortest distance from the outer to the inner duct boundaries (red lines). L: Ellipses are fitted 

to outer and inner duct boundaries. E-J: scale bar is 100 µm. K,L: scale bar is 25 µm. 

 

Following segmentation of ducts, a number of ductal parameters were measured based on the 

properties of the inner and outer duct boundaries. The outer boundary defines the outer edge of 

the duct wall and the inner boundary defines the inner edge of the duct wall; the lumen. The 

width of the duct wall was measured at every pixel on the outer edge of the duct wall. This was 

done by finding the shortest distance between every point on the outer boundary and the 

nearest point on the inner boundary. Duct wall width  was measured for each non-hyperplastic 

duct, ductal hyperplasia, and DCIS lesion and the vector of values were summarized by 

calculating the mean, median, mode, interquartile range, and standard deviation. Other scalar 

parameters measured include the area of the duct wall, area of the lumen, area of an ellipse 

approximating the duct wall, area of an ellipse approximating the lumen, lengths of the major 

and minor axes for the duct and the lumen, solidity of the duct and the lumen, and eccentricity of 

the duct and the lumen.  

 

Statistical analysis and model building: APF parameters were calculated for all sites (n = 259) 

and ductal parameters were calculated for all sites that contained ducts (n=50), and the 

diagnostic performance of each image parameter was individually assessed by determining the 

classification accuracy. Two-class linear discriminant analysis was performed to classify 

malignant from benign breast architectural features based on each individual APF or ductal 

parameter; receiver operator characteristic (ROC) curves were constructed and area under the 

curve (AUC) was calculated for each ROC curve. Sensitivity and specificity values were 

determined at the optimal cutpoint. Parameters were sorted by accuracy for classification of 

neoplasia based on AUC values. Boxplots were created for the parameters with the highest 

AUCs. A Student t-test for samples with unequal variances was used to identify statistically 

significant differences between mean parameter values measured in benign and malignant 

tissues. This analysis was performed to evaluate individual APF and ductal parameters to 

incorporate into a classification model.  

 

Next we sought to develop a multivariate model to yield optimal separation between benign and 

malignant tissues. Towards that end, all 33 APF and ductal variables were used as input for a 

classification and regression tree (CART) function in Matlab. Decision trees were constructed 

using the automated Matlab function classregtree, which selects parameters and cutpoints that 

lead to the optimal classification of benign and malignant breast architectural features. Decision 

trees were pruned to prevent a single APF or ductal from being used at more than one node 

within the tree. Pruning was also performed to prevent the number of categories for 

classification of malignant breast features from exceeding 3: the number of malignant tissue 

types (IDC, ILC, and DCIS). After construction, decision tree nodes were pruned by finding the 

next higher node whose decision point led to two categories, one with a majority of neoplastic 



sites, and one with a majority of benign sites. A custom leave one out cross-validation algorithm 

was also developed in order to calculate the cross-validated sensitivity and specificity. 

Specifically, 258 of the 259 data points were used to build a CART model, which contained the 

same two variables at the first and second decision points. Specifically the standard deviation of 

IND (StdIND) was the first decision point and the number of lumens was the second decision 

point. However, with each iteration of leave one out cross-validation, the cutoff value of StdIND 

could vary. The cutoff value associated with the number of lumens (number of lumens >1) was 

held constant because biologically normal ducts are expected to only contain a single lumen; 

therefore, this was considered to be the optimal and only logical cutoff value and therefore was 

held constant. Then the model was applied to the remaining data point, which was classified as 

either benign or malignant. This process was repeated for all 259 data points, and the 

calculated diagnosis for each image was compared to the known diagnosis in order to calculate 

sensitivity and specificity for the cross-validated model. The performance of the decision tree 

was characterized by computing sensitivity and specificity for classification of malignant breast 

architectural features. Additionally, sensitivity and specificity were calculated for each individual 

histologic type of malignant tissue in order to determine the relative classification accuracy for 

IDC, ILC, and DCIS sites. For example, in order to calculate sensitivity for IDC, true positives 

were defined as IDC sites that had been classifed as malignant by the decision tree, and false 

negatives were defined as IDC sites that had been classified as benign. Specificity was 

calculated by defining true negatives as benign sites that were correctly classified in the 

decision tree and false positives were defined as benign sites that were incorrectly classified. An 

ROC curve was constructed for the decision tree model. All sites were sorted in order of 

ascending StdIND value and then sensitivity and specificity for classification of neoplasia were 

calculated at every StdIND value. The cutoff value for number of lumens was held constant at 1 

lumen because biologically normal ducts are expected to only contain a single lumen. AUC was 

calculated based on the resulting ROC curve.  

 

Results:  

A total of 259 sites from 36 patients were identified in composite confocal fluorescence images. 

A summary of patients, sites, and diagnoses are included in Table 2.4. In total there were 179 

benign sites, which included adipose tissue, fibrous tissue, lobules, and benign ducts, and 80 

malignant sites, which included DCIS, IDC, and ILC.  

 

Table 2.4 Summary of patients from which tissue specimens were acquired, sites analyzed, and 

histologic diagnoses 

Diagnosis Patients Sites 

Benign   

     Adipose tissue 18 42 

     Fibrous tissue 16 31 

     Lobules 12 82 

     Non-hyperplastic ducts 9 20 

     Hyperplastic ducts 4 4 

Malignant   

     Ductal carcinoma in situ (DCIS) 6 26 



     Invasive ductal carcinoma (IDC) 15 37 

     Invasive lobular carcinoma (ILC) 3 17 

Total 36 259 

 

Figure 2.9 shows representative confocal images of sites without ducts acquired by confocal 

fluorescence microscopy in row 1 and APFs isolated with MSER at those sites in row 2. Row 3 

shows sites in the corresponding histologic slide with H&E staining that have similar histology to 

the confocal sites.  APFs were false-colored green and overlaid onto the original images for 

visualization. As seen, APFs are isolated at the periphery of adipose cells and are dispersed 

throughout the fibrous tissue image. Denser clusters of APFs are isolated in and around lobules. 

APFs are the densest at sites with malignant tissue, including IDC and ILC.  

 

 
Figure 2.9. Representative raw confocal fluorescence images of adipose tissue, fibrous tissue, 

lobules, invasive ductal carcinoma, and invasive lobular carcinoma are shown in A through E, 

respectively. F-J: APFs segmented by identifying maximally stable extremal regions (MSER) are 

false colored green and overlaid onto the raw confocal fluorescence image. K-O: Histologic 

slides with H&E staining show similar histology to confocal images in A-E. Slides were prepared 

with the same specimens from which confocal images were acquired. Scale bar is 100 µm. 

 

Figure 2.10 shows representative images of breast ducts acquired with confocal fluorescence 

microscopy in row 1, APFs that were isolated at sites with breast ducts using MSER in row 2, 

and ducts that were segmented with the ductal segmentation algorithm in row 3. Row 4 of 

Figure 2.10 shows sites in the corresponding histologic slide with H&E staining that have similar 

histology to the confocal sites. APF density in and around the ducts increases from the non-

hyperplastic duct, to the hyperplastic duct, to DCIS. However, relatively few APFs are 

successfully isolated using MSER within the non-hyperplastic and hyperplastic ducts, which is 



most likely due to the fact that the borders of individual APFs are difficult to visually discern in 

confocal fluorescence images. The images of sites isolated with the ductal segmentation 

algorithm show well-defined lumens in both the non-hyperplastic duct and hyperplastic duct. 

Conversely, the image of DCIS shows bridges of cells crossing the lumen to create a cribriform 

pattern with several lumens.  

 

 
Figure 2.10. Representative confocal images of normal, non-hyperplastic ducts (A), hyperplastic 

ducts (B), and ductal carcinoma in situ (C) analyzed with the APF segmentation algorithm 

(middle row) and with the ductal segmentation algorithm (bottom row). D-F: APFs segmented by 

identifying maximally stable extremal regions (MSER) are false colored green and overlaid onto 

the raw confocal fluorescence image. G-I: Breast ducts segmented using the ductal 

segmentation algorithm. J-L: Histologic slides with H&E staining show similar histology to 



confocal images in A-E. Slides were prepared with the same specimens from which confocal 

images were acquired. Scale bar is 100 µm. 

 

The parameters that yielded the highest performance for distinguishing between benign and 

malignant sites are shown in Table 2.5. We evaluated the performance of APF parameters for 

classification of benign and malignant features in all sites and in sub-groups of sites that did or 

did not contain ducts to determine the groups for which APF parameters had the highest 

classification accuracy.  We only evaluated the classification accuracy of ductal parameters at 

sites that contained ducts. APF parameters measured at non-duct sites achieve higher 

performance (AUC = 0.93) than APF parameters measured at duct sites (AUC = 0.69). 

Conversely, ductal parameters achieve higher performance (AUC = 0.92) than APF parameters 

for classification of duct sites (AUC = 0.69). These findings suggest that a combination of APF 

parameters measured at non-duct sites and ductal parameters measured at duct sites may yield 

improved separation between all benign and malignant sites.   

 

Table 2.5 Summary of top performing parameters for distinguishing between benign and 

malignant sites measured using algorithms 

Group Performanc

e metric 

Standard 

deviation of 

IND 

Area fraction Range of IND 

A. Classification by 

APF Parameter – 

All Sites 

AUC 0.87 0.86 0.87 

Sensitivity 78 76 76 

Specificity 82 79 85 

B. Classification by 

APF Parameter – 

Non-duct Sites 

AUC 0.93 0.92 0.91 

Sensitivity 85 80 81 

Specificity 88 87 88 

C. Classification by 

APF Parameter – 

Duct Sites 

AUC 0.68 0.72 0.74 

Sensitivity 46 65 62 

Specificity 100 70 96 

Group Performance 

metric 

Number of 

lumens 

Minor 

dimension of 

outer ellipse 

Area of outer 

ellipse 

D. Classification by 

Duct Parameter – 

Duct Sites 

AUC 0.92 0.83 0.82 

Sensitivity 88 73 81 

Specificity 88 79 75 

 

Boxplots showing the mean and interquartile range of the top three performing APF parameters 

are shown in Figure 2.11. Both Std IND and Range IND decrease from adipose to fibrous to 

lobules to ILC to IDC, while AF increases from adipose to fibrous to lobules to ILC to IDC. This 

trend suggests that the number of clusters of APFs increases from adipose tissue, which has 

the fewest, to IDC, which has the greatest number of clusters of APFs. All comparisons between 

benign (adipose, fibrous, lobules) and malignant (IDC, ILC) sites were significant. Similarly, AF 

increases from adipose to fibrous to lobules to IDC, which suggests increasing APF density.  



Boxplots showing the mean and interquartile range of the top three performing ductal 

parameters for duct sites are also shown in Figure 2.11. DCIS lesions have a significantly higher 

number of lumens than hyperplastic and non-hyperplastic ducts (p < 0.001), which is consistent 

with the cribriform pattern that occurs when abnormally high cellular proliferation causes the 

luminal space to be filled with epithelial cells. The minor dimension of the outer ellipse 

approximating the duct is significantly smaller in normal, non-hyperplastic ducts than in DCIS 

lesions (p < 0.001). There is no significant difference in the minor dimension between ellipses 

approximating hyperplastic ducts and DCIS lesions. The area of the outer ellipse approximating 

duct area was significantly smaller in normal, non-hyperplastic ducts than in DCIS lesions (p < 

0.001). There is no significant difference between the average area of outer ellipses 

approximating hyperplastic ducts and DCIS lesions.  

 
Figure 2.11. Mean value of parameters used to separate malignant from benign sites. APF 

parameters calculated with the APF segmentation algorithm are shown for all adipose, fibrous, 

lobules, invasive ductal carcinoma (IDC), and invasive lobular carcinoma (ILC) sites; A: 

standard deviation of IND; B: area fraction; C: range of IND. Ductal parameters calculated with 

the duct-based segmentation algorithm are shown for all normal, non-hyperplastic ducts, 

hyperplastic ducts (Hyperplasia), and ductal carcinoma in situ (DCIS); D: number of lumens; E: 

minor dimension of outer ellipse; F: area of outer ellipse. The number of sites represented in 

each box is represented by n. Significant differences between mean values of parameters 

measured at benign and malignant sites are indicated by asterisks (*). 

 

All 33 APF and ductal parameters were used as input for a classification and regression tree 

(CART) algorithm to automate selection of parameters to discriminate benign and malignant 



sites. The CART algorithm was pruned to remove redundancies and over-fitting to the data set. 

The classification tree generated through this process is shown in Figure 2.11. Std IND with a 

cutoff value of 6.83 µm is the first decision point selected for classification by the decision tree, 

followed by number of lumens with a cutoff value of 1. Std IND < 6.83 µm separates out 52 true 

positives composed of IDC, DCIS, and ILC sties and 9 false positives composed of fibrous and 

lobule sites. The remaining sites enter the second node – Number of lumens > 1– which 

separates out 13 true positive DCIS sites and 3 false positive hyperplasia and normal duct sites. 

The remaining sites are classified as benign and are composed of 167 true negative adipose, 

fibrous, lobule, normal duct, and hyperplasia sites and 15 false positive IDC, DCIS, and ILC 

sites. Overall, the model achieved a sensitivity and specificity of 81% and 93% respectively, 

corresponding to an area under the curve of 0.93 and 90% overall classification accuracy, as 

shown in Table 2.6. If the model is evaluated based on classification of individual histologic 

types of neoplasia, 92% of IDC sites and 96% of DCIS sites were classified correctly.  However, 

the model correctly classified only 35% of ILC sites. Additionally, leave one out cross-validation 

was performed, which yielded a cross-validated sensitivity of 75% and specificity of 93%. 

Specifically, cross-validation resulted in a 6% drop in sensitivity (from 81% to 75%) due to the 

fact that 5 additional IDC images were incorrectly classified during cross-validation. When each 

of these 5 cases were left out of the original cohort of data used to form the model (in other 

words during the leave one out cross-validation exercise), the cutoff value associated with 

StdIND dropped. This resulted in each of the 5 cases being classified as a false negative. For 

the remainder of the images, the cutoff value associated with StdIND remained the same, 

resulting in the same specificity of 93%.   



 
Figure 2.11. Classification tree automatically generated when all APF and duct data was used. 

Duct- and APF-based parameters selected by classification regression tree analysis to optimize 

separation between benign and malignant sites. Bar graphs show the diagnoses of sites sorted 

into each classification category. 

 

Table 2.6. Performance of model for classification of neoplasia, non-neoplasia, and individual 

histologic types of breast neoplasia 

 Sensitivity Specificity 

Classification Tree Model 81% (65/80) 93% (167/179) 

Cross-validated Model 75% (60/80) 93% (167/179) 

 Correctly Classified  

All Sites 90% (232/259)  

DCIS 96% (25/26)  

IDC 92% (34/37)  

ILC 35% (6/17)  

 

As seen in the histograms in Figure 2.11 ILC sites account for the largest number of false 

negative (n = 11 out of 17 sites) while lobule sites account for the largest number of false 

positives (n = 8 out of 82 sites). Figure 2.12 shows representative confocal images of a true 

positive ILC, false negative ILC, true negative lobules, and false positive lobules sites in row 1 

and APFs isolated with MSER at those sites in row 2. Row 3 shows sites in the corresponding 

histologic slide with H&E staining that have similar histology to the confocal sites. As seen, there 

are large differences in the density and clustering of APFs between the true positive ILC site 



and true negative lobules site. In comparison, the false negative ILC site in has relatively few 

APFs, which appear to be predominately clustered in the upper left region of the image. 

Conversely, the false positive lobules site contains more APFs than Figure 2.12G, particularly in 

stromal tissue located in between lobules.  

 

 
Figure 2.12. Representative images of sites with lowest classification accuracy in the decision 

tree model. A-D:  invasive lobular carcinoma and lobules in confocal fluorescence images. E-H: 

APFs segmented by identifying maximally stable extremal regions (MSER) are false colored 

green and overlaid onto the raw confocal fluorescence image. I-L: Histologic slides with H&E 

staining show similar histology to confocal images in A-E. Slides were prepared with the same 

specimens from which confocal images were acquired. A, E: a true positive invasive lobular 

carcinoma (ILC) site; B, F: false negative ILC site; C, G: true negative lobules; and D, H: false 

positive lobules. Scale bar is 100 µm. 

 

Discussion 

In this study, we performed quantitative analysis of breast histology in confocal fluorescence 

images by designing algorithms to segment and measure APF and ductal parameters. We 

combined APF and ductal parameters to develop a classification tree model to classify 

malignant from benign changes in the breast parenchyma with 81% sensitivity and 93% 

specificity, which corresponded to an AUC of 0.93 and an overall accuracy of 90%. The cross-



validated model classified the same sites with 75% sensitivity, 93% specificity, and 88% overall 

accuracy.  

 

Several groups have used automated morphometric evaluation of nuclei in H&E stained 

sections of breast tissue [53-56], cytological smears of breast tissue [57], and fluorescence 

microscopy images of mouse tissue [42, 43] to classify benign and malignant breast features. 

While these groups demonstrate that quantitative nuclear parameters can be used to classify 

benign and malignant breast features, some lesions are more difficult to distinguish. For 

example, Rajesh et al used automated nuclear morphometry to classify ILC, IDC, and borderline 

lesions [55]. While significant differences were found between parameters measured for ILC 

and IDC, no significant difference was found between parameters measured for ILC and benign 

borderline lesions [55]. We found similar results to the other studies – namely that ILC is difficult 

to distinguish from non-neoplasia based on APF features alone. Additionally, several studies 

have demonstrated the feasibility of computerized image analysis to distinguish between non-

hyperplastic ducts, hyperplastic ducts, and DCIS. Mayr et al used computerized image analysis 

to quantify ductal parameters in H&E-stained slides of breast biopsies and found that the most 

significant parameters for differentiation between normal ducts and DCIS were duct mean 

diameter and the presence of necrosis [58]. Anderson et al used a computerized segmentation 

algorithm to measure parameters of ductal hyperplasia and DCIS in tissue sections stained with 

the antibody cocktail AE 1/3, and showed that the highest classification accuracy for DCIS was 

achieved by combining parameters of ducts and lumina [59]. The findings from our work agree 

with previous studies, which showed that quantitative ductal parameters can be used to classify 

benign and malignant ducts [58, 59].  

 

The strengths of our study are that we demonstrate that APF and ductal parameters can be 

measured in confocal fluorescence images of clinical samples acquired at the point of care. We 

perform quantitative analysis of breast tissue architecture without requiring tissue fixation, 

cutting, and staining and achieve comparable classification accuracy to studies that performed 

computerized analysis on fixed breast tissue stained with H&E. The model classified IDC and 

DCIS with greater than 90% accuracy using parameters that were based on the morphological 

characteristics of each malignant tissue type. Specifically, IDC was classified with 92% accuracy 

using standard deviation of IND as a parameter, which identifies dense clusters of APFs. DCIS 

was classified with 96% accuracy based on the presence of more than one lumen, which is 

consistent with the cribriform pattern. Overall we achieve high performance (AUC = 0.93) on a 

large number of sites (n = 259).  

 

There are several limitations associated with this study. While our initial data set contains a 

large number of sites (n = 259), the data was acquired at a single center (The University of 

Texas M.D. Anderson Cancer Center), and some individual categories, such as ILC contain 

relatively few sites (n = 17); therefore, additional work is needed with a large, independent data 

set composed of data from more than one center to validate the feasibility and reproducibility of 

these parameters. However, our initial results indicate that leave one out cross-validation of the 

CART model yields similar performance to the original model suggesting that our model may 

generalize to an independent data set. Another limitation to the study are the large variances 



observed for the APF parameters that reflect the high degree of heterogeneity in APF size and 

spacing in benign and malignant breast epithelia. Changes in APF area and spacing in breast 

epithelia occur frequently in both ductal and lobular nuclei and can be due to a number of 

clinical features, including sexual maturity, pregnancy, menopausal status, use of hormonal 

contraceptives, and presence of mammary carcinoma [80]. The presence of heterogeneity in 

APF area and distribution within benign breast tissue is a potential source of variance for the 

nuclear parameters measured in this study. Similarly, IDC and ILC typically contain irregular 

nuclear sizes and an irregular distribution of nuclei [81, 82], which is another potential source of 

variance within APF parameters. In addition, the algorithm designed for ductal segmentation 

uses an interactive threshold to convert images from grayscale to binary and a user-defined 

selection tool to isolate ducts from surrounding nuclei. The ductal segmentation process is a 

potential source of variability between users, particularly for parameters that could be impacted 

by a user’s visual assessment of the duct wall boundaries, such as duct wall width. However, 

the ductal parameter that was ultimately selected for the decision tree model was the number of 

lumens, which is unlikely to vary at the decision point (number of lumens greater than 1) based 

on slight variations to the threshold value or by excluding surrounding nuclei. This is because it 

is readily apparent if a duct has one or more lumens based on visual assessment, however the 

segmentation algorithm could assist in identifying ducts with more than 1 lumen. Lastly, 

examination of the breakdown of false negatives and false positives reveals that our algorithm 

does most poorly at distinguishing ILC and lobule sites. Specifically 65% (n = 11 out of 17 sites) 

of ILC sites and 10% of lobule sites (n = 8 out of 82 sites) are incorrectly classified. Figure 2.12 

reveals that there are differences in quantity and clustering of APFs between the true positive 

and false negative ILC sites. In particular, APFs in the false negative ILC site appear to be 

predominately located in the upper left region of the image, suggesting that only the upper left 

region of the image contains ILC while the remainder of the image may contain other benign 

tissue. Therefore, the fraction of the image that consists of a malignant tissue type may 

correlate with the likelihood that it is correctly classified as a true positive site.  Conversely, the 

false positive lobules site contains more APFs than the true negative lobule site, particularly in 

stromal tissue located in between lobules. This indicates that the stromal tissue that lobules or 

other features are embedded within may lead to incorrect classification as a false positive site. 

In future work, additional parameters are needed in order to classify lobules as benign and ILC 

as malignant with greater accuracy.  

 

It is to be noted that while confocal microscopy provides high resolution high quality images, 

currently its cost, footprint, and maintenance requirements limit the ability to translate this 

imaging platform to routine usage in patient care. Specifically, the need for beam scanning in 

confocal microscopy limits the volume of tissue that can be surveyed in a given amount of time.  

However, structured illumination microscopy (SIM) has the added advantage of full-field 

illumination and non-descanned detection, which lowers the complexity and cost and increases 

the speed with which microscopy of large tissue areas can be performed. Thus, in future work 

the algorithms described here could be combined with SIM imaging of breast tissue to enable 

automated diagnosis of large tissue areas.  

 

Conclusion  



In conclusion, quantitative APF and ductal parameters were measured in confocal fluorescence 

images of fresh breast tissue and used to develop a classification algorithm that distinguishes 

between 259 benign and malignant sites with an accuracy of 88%. The APF and ductal 

parameters described in this study could be used to develop criteria to automate breast lesion 

diagnosis for immediate evaluation of fresh tissue at the point of care obviating the need for 

extensive tissue preparation.  

 

Plans for year 6 

Quantitative diagnostic criteria developed on fluorescence confocal images could be applied to 

SIM images of breast tissue in the future in order to enable automated assessment of breast 

tumor margins.  

 

Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 

breast cancer: 

Introduction  
Until this year, our progress toward Aim 3 focused on the development of an optical imaging 
strategy for simultaneously monitoring glucose uptake and oxygenation in vivo. The primary 
goal of developing such a technique is to identify aerobic glycolysis in tumors- a common 
metabolic phenotype that manifests itself in aggressive, therapy-resistant tumors. In the past 
year, we have published the results presented in our last report detailing the final optimization of 
our hyperspectral imaging technique for measurement of delivery-corrected glucose uptake and 
vascular oxygenation (Frees, PLOS ONE 2014). Additionally, we have published on a similar 
technique to monitor glucose and oxygenation endpoints with optical spectroscopy (Rajaram, 
PLOS ONE 2015). We are confident that both our imaging and spectroscopy methods can be 
used to quantify glucose and vascular oxygen saturation for the identification of tumors 
undergoing aerobic glycolysis. The techniques are complementary, since hyperspectral imaging 
provides spatial information that can inform on tumor heterogeneity and spectroscopy is ideal 
for monitoring the metabolism of solid tumors during long-term tumor growth and therapy 
studies. 
 
While aerobic glycolysis is often considered the primary metabolic program of aggressive 
tumors, recent studies show that many tumors use a combination of glycolysis and 
mitochondrial metabolism to better supply the tumor’s energy needs [83]. Mitochondria play 

crucial roles in maintaining sufficient ATP levels and in regulating apoptosis to promote 
proliferation [84]. Mitochondrial membrane potential, maintained by electron transport, is the 
primary driver for mitochondria functionality [84], and hyperpolarized mitochondria have been 

observed in a wide range of cancers [85]. It follows that increased mitochondrial membrane 
potential provides natural contrast for identification of cancers. Therapies are now being 
developed that target mitochondrial metabolism and cause changes in mitochondrial membrane 
potential. A decrease in membrane potential may indicate successful treatment of a tumor, as a 
loss of membrane potential is closely related to the beginning of the apoptotic cascade toward 
cell death [86]. 
 
Additionally, recent literature has shown that the aggressiveness of a cancer depends on its 
ability to maintain “metabolic plasticity” [83], that is, to quickly adapt to microenvironmental 
stress. Metastatic cells were shown to adapt to stress differently than non-metastatic cells; in 



particular, they were able to rapidly change their metabolic programming based on substrate 
availability [83]. Taken together, the literature indicates that measuring a combination of 
endpoints that reports on glucose uptake, oxygenation, and mitochondrial metabolism may be 
more effective for distinguishing particularly aggressive tumors. Further, subjecting tumors to 
stress and observing their metabolic plasticity may give additional insight into their eventual fate, 
e.g. helping to predict therapy response or resistance. 
 
Despite its recognized importance, few methods exist to measure mitochondrial membrane 
potential in vivo. A family of cyanine dye-based compounds has been shown to successful 
monitor expected changes in mitochondrial membrane potential [85], but the compounds are 
still being developed and are not commercially available. Their fluorescence excitation and 
emission fall in the NIR-wavelength range, which offers good depth penetration but cannot be 
imaged on many microscopes. Another class of lipophilic, cationic dyes based on the 
fluorescent compound rhodamine are well-validated to report on mitochondrial membrane 
potential [87]. One such dye is TMRE. TMRE’s primary use is in cell culture, but a handful of 
research groups have used them in vivo for visualization of mitochondria [88]. However, these 
few studies did not thoroughly characterize the uptake kinetics of the dye, and also required 
topical application of TMRE, making the technique very limiting. 
 
Based on its low cost, commercial availability, and extensive characterization in cell studies, we 
identified TMRE as a good candidate for monitoring mitochondrial membrane potential in vivo. 
Here we present our optimization of TMRE to measure relative mitochondrial metabolism in vivo 
in a non-tumor window chamber model. We also demonstrate for the first time that TMRE can 
be used in vivo to identify aberrant cancer metabolism. 
 
Following the optimization of TMRE as a marker of mitochondrial membrane potential, we 
incorporate our new mitochondrial probe with previously optimized glucose uptake and 
oxygenation endpoints [89, 90] to create an “optical energy budget”. We show here our 
preliminary results exploring the relationship between optical energy budget and metastatic 
potential. Further, we stress the non-metastatic and metastatic tumor lines with hypoxia to 
observe the changes in optical energy budget; our hypothesis is that metastatic tumors maintain 
“metabolic plasticity” and respond to stress differently than non-metastatic tumors. 
 
In summary, a majority of our focus during the previous year can be divided into two major 
components: 1. Optimization of TMRE for in vivo measurement of mitochondrial membrane 
potential, and 2. Development of a hypoxia “stress test” to relate metabolic stress response to 
metastatic potential. This works propels us toward our long-term goal of determining whether 
the oxygenation-metabolic demand relationship changes in a tumor in response to stress and 
whether this response or change can be indicative of long-term tumor behavior.  
 
  
Methods  
vitro cell culture 
4T1, 4T07, and 67NR murine mammary adenocarcinoma lines were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% 
antibiotics. For the TMRE confocal imaging experiment, the cells were trypsinized and seeded 
on 60mm tissue culture plates 24 hours before imaging according to established protocols. Cells 
were incubated with 50nM TMRE for 30 minutes prior to the start of imaging. 
 
Dorsal skin flap window chamber model 
All in vivo experiments were conducted according to a protocol approved by Duke University 



Institutional Animal Care and Use Committee. We surgically implanted titanium window 
chambers on the back of female athymic nude mice (nu/nu, NCI, Frederic, Maryland) under 
anesthesia (i.p. administration of ketamine (100 mg/kg) and xylazine (10 mg/kg)). We injected a 

20 L suspension (20,000 cells) of 4T1, 4T07, or 67NR cells into the dorsal skin fold and placed 
a glass coverslip (dia = 12 mm, No. 2, Erie Scientific, Portsmouth, New Hampshire) over the 

exposed tissue. In a separate group of control mice, we injected 20 L of saline. All animals 
were housed in an on-site housing facility with ad libitum access to food and water and standard 
12-hour light/dark cycles. A flowchart depicting the experiment protocol is presented in Figure 
3.1. For a 6-hour period prior to imaging, the animals were only provided with water. During 
normoxia measurements, the animals were allowed to breathe 21% oxygen. For the hypoxia 
group, the animals were subjected to breathing 10% oxygen for 15 minutes prior to imaging and 
through the end of imaging. For the CCCP group animals, the window chamber glass was 
removed and 0.1 mL of 50μM CCCP (carbonyl cyanide m-chlorophenylhydrazone) was topically 
applied to the tissue. The glass was immediately replaced, and imaging began 5 minutes later. 
 
Hyperspectral imaging of oxygen saturation, glucose uptake, and mitochondrial membrane 
potential 
A schematic of our study design is shown in Figure 3.1. We used a Zeiss Axioskop 2 
microscope for recording all images. At the end of 6 hours of fasting, we initially recorded trans-
illumination images and corresponding background fluorescence images. In addition, a free 
space trans-illumination image using appropriate neutral density filters was recorded before 
every imaging session to account for daily variations in light intensity. The animals were 

administered a 100 L tail-vein injection of TMRE (25mM; MW: 515) or NBDG (6mM; MW: 
342.16) dissolved in sterile saline.  We recorded the TMRE or NBDG fluorescence for 75 
minutes as follows: every 5 seconds for the first 8 minutes, every 30 seconds for the next 30 
minutes and every 3 minutes for the final 35 minutes of imaging.  

 
Figure 3.1 Imaging of 2-NBDG and TMRE in a dorsal window chamber model. The timeline of 
imaging events and description of hyperspectral imaging settings are shown. Trans-illumination 
images were collected in 10 nm increments from 500–600 nm and used to calculate hemoglobin 
saturation, as shown in the SO2 image. Typical mages for the endpoints 2-NBDG60/RD (delivery 
corrected 2-NBDG uptake) and TMRE60 (TMRE uptake) are also shown. A 6 mM injection of 2-
NBDG or 25uM injection of TMRE was given and imaged for 75 minutes, and the mean of the 
tissue region for each image was used to construct the kinetic curves at right. Adapted from 



Frees, et al [71]. 
 
Calculation of Vascular and Metabolic Parameters 
Trans-illumination images were collected in 10 nm increments from 500–600 nm and used to 
create an image cube (x,y,λ). A modified form of the Beer-Lambert law that describes 

absorption of chromophores in thin slices is fit to the trans-illumination image cube (x,y,) to 
obtain the concentration of the primary absorbers – oxy [HbO2] and deoxy-hemoglobin [dHb] at 
each pixel [91]. We then calculate total hemoglobin content, [THb] ([HbO2]+[dHb]), and 
SO2 ([HbO2]/[THb]) at each pixel. The presence or absence of [THb] was used to segment the 
images into vascular and tissue space, respectively. 
 
After 2-NBDG or TMRE injection, fluorescence images were collected) for a period of 75 
minutes. A kinetic uptake curve was created from the (x,y,t) data for each (x,y) pixel location. As 
shown in Figure 3.1, for 2-NBDG the initial rate of delivery (RD) and glucose uptake (2-NBDG60) 
were calculated from the time course for each pixel. RD was calculated from the rise to the initial 
peak of the curve as (Imax-I0)/Tmax, where subscript 0 corresponds to a baseline image captured 
prior to 2-NBDG injection. 2-NBDG60 is defined as glucose uptake. For TMRE, we found that 
signal was stable from 40-75 minutes after injection. We chose to compare TMRE uptake at 60 
minutes (TMRE60) across groups. This timepoint was chosen for future simultaneous 
measurement of TMRE and 2-NBDG. 
 
TMRE endpoints were additionally parsed by SO2. For each TMRE60 image, every tissue pixel in 
the tumor area was assigned to an SO2 group according to the SO2 of the nearest vascular 
pixel. In a given image, there were as many as five SO2 groups: 0–10% SO2, 10–20% SO2, 20–
40% SO2, 40–60% SO2, and 60–80% SO2. The distribution of pixels for each endpoint was then 
represented as a survival curve (1-cumulative distribution) stratified by SO2. Curves were then 
averaged within a tissue type (Non-tumor, 67NR, 4T07 or 4T1). Each curve then represents the 
mean of distributions of TMRE60 pixels at a given SO2 level from up to 6 mice. Curves were 
plotted in two ways: to compare TMRE60 across SO2 levels within a given tissue type, and to 
compare TMRE60 across tissue types at a given SO2 level. 
 
Statistical Analysis 
For all in vitro and in vivo studies containing multiple groups, a one-way analysis of variance 
(ANOVA) was performed to test for global differences and a Tukey-Kramer post-hoc test was 
used to compare between groups. For all analyses, differences between groups were deemed 
significant at a 95% confidence level (p≤0.05). Error bars correspond to standard error on all 
graphs. The Statistics Toolbox in MATLAB (MathWorks, USA) was used for all statistical tests. 
 
 
Results 
 
Part 1: Optimization of TMRE for in vivo measurement of mitochondrial membrane 
potential 
 
In Figure 3.2, we investigated whether localization of TMRE delivered in vivo via tail vein 
injection was comparable to TMRE localization in cell culture exposed directly to TMRE in 
solution. Indeed, we saw that in all tumor cell lines and in a non-tumor window chamber, TMRE 
localized to mitochondrial-sized features surrounding cell nuclei stained with Hoescht nuclear 
contrast agent. This confirmed to us that TMRE localization in vivo 30 minutes after tail vein 
injection was comparable to TMRE localization in vitro after 30 minutes of incubation with TMRE 
solution. 



 

Figure 3.2 High resolution imaging shows consistent localization of TMRE in vitro and in vivo. 
Panel 3.1A shows in vitro uptake of 50nM TMRE in a panel of murine breast cancer cell lines. 
The cells were incubated with TMRE for 30 minutes prior to imaging. Hoescht nuclear stain was 
added to cells 10 minutes prior to imaging. Panel 3.2B shows in vivo uptake of TMRE in a non-
tumor window chamber, 30 minutes after tail vein injection of 0.1mL of 25μM TMRE. Hoescht 
was injected subcutaneously in the window chamber 15 minutes prior to TMRE injection. In both 
in vitro and in vivo imaging, TMRE localizes to mitochondrial-sized features surrounding cell 
nuclei. 
 
Figure 3.3 shows an investigation of TMRE uptake kinetics in non-tumor tissue during control 
conditions (Normoxia, 21% O2) and during environmental perturbations (Hypoxia and CCCP). 
Hypoxia has been shown to cause a decrease in mitochondrial membrane potential in cells in 
vitro, likely due to a decrease in oxidative phosphorylation and electron transport during low-
oxygen conditions. CCCP, a protonophore, has been shown to decrease mitochondrial 
membrane potential in both cell and animal models. As expected, both hypoxia and CCCP 
caused a drastic decrease in TMRE uptake, signaling that our measurements indeed correlate 
with expected changes in mitochondrial membrane potential. Interestingly, when each curve 
was normalized to its respective peak, the uptake kinetics for each group were 
indistinguishable. This indicates that only the magnitude of TMRE uptake, and not the observed 
kinetics, report on mitochondrial membrane potential. The small variance in kinetics across 
mice, as well as the stability of the TMRE signal from 40-75 minutes, allows for robust 
measurements for a wide range of experiments. For our studies, we used the timepoint t=60. 
This timepoint was chosen for eventual integration of TMRE with our previously optimized 
measurements of glucose (2-NBDG) uptake.  
 



Figure 3.3. TMRE uptake kinetics are repeatable and robust to measure response to 
perturbations. Representative images of TMRE uptake in non-tumor window chambers 
following injection with 0.1mL of 100uM TMRE are shown in Panel 3.3A. The normoxia window 
chamber was imaged under baseline imaging conditions (21% O2). The hypoxia window 
chamber was imaged while breathing 10% O2. The mouse breathed hypoxic gas 15 minutes 
prior to TMRE injection. In the CCCP window chamber, 0.1mL of 50μM CCCP was administered 
topically 5 minutes prior to TMRE injection. Figure 3.3B shows the effect of environmental 
perturbations on TMRE uptake kinetics. Both hypoxia and CCCP decreased TMRE uptake at all 
timepoints. However, as shown in Figure 3.3C, normalized kinetics are indistinguishable 
between groups. Additionally, TMRE signal is incredibly stable following initial uptake; the 
average loss of signal is less than 5% from t = 40 minutes to t= 75 minutes (Mean ΔTMRE = -
0.045, ± 0.03 (SE)). The timepoint 60 minutes was chosen for our studies. 

In Figure 3.4, the relationship between TMRE uptake (TMRE60) and vascular oxygenation (SO2) 
is explored for non-tumor window chambers under control conditions (normoxia), hypoxic 
conditions, or CCCP pre-treatment. TMRE60 and SO2 were quantified for each mouse. As 
expected, perturbation of the tissue microenvironment with hypoxia or CCCP was sufficient to 
decrease TMRE60. The decrease in TMRE60 was likely caused by diverting substrates away 
from oxidative phosphorylation and thus causing a decrease in mmp (hypoxia group) or by 
directly collapsing mmp by transport of protons through the membrane (CCCP group). 
Surprisingly, the overall mean SO2 was not decreased during hypoxia compared to the 
normoxia group; however, SO2 in each of the mice decreased from its own baseline after 
hypoxia (p<0.05 by paired t-test). CCCP caused a slight but not significant increase in SO2, 
likely due to decreased oxygen consumption.  

During control conditions, TMRE uptake is consistent regardless of SO2, reflecting the tightly 
controlled metabolic state of normal tissue. However, when energy supply and demand is 



perturbed with hypoxia, TMRE uptake increases with SO2, revealing a relationship between 
increased oxygen consumption and TMRE uptake. In the CCCP group, TMRE uptake was 
comparable, but low, at all SO2. Figure 3.4D shows that, regardless of regional SO2, TMRE 
uptake was decreased in both the hypoxia and CCCP groups relative to control. It follows that 
TMRE uptake, and by extension, mitochondrial membrane potential, are sensitive primarily to 
the disruption of baseline conditions of the microenvironment, and not to natural variations in 
oxygen consumption. 

 

Figure 3.4 TMRE uptake is sensitive to changes in the tissue microenvironment. Panel 
3.4A shows TMRE uptake and SO2 in non-tumor window chambers subjected to 1. normoxia 
(15 minutes of breathing room air before TMRE injection), 2. hypoxia (15 minutes of breathing 
10% O2 before TMRE injection), or 3. Pre-treatment with the mitochondrial uncoupler CCCP 
(0.1mL of 50μM CCCP) topically applied to tissue 5 minutes before TMRE injection). Each 
mouse was administered 0.1mL of 25uM TMRE via tail vein. Panel 3.4B shows group averages 
of TMRE60 and SO2 in each treatment group. Though there was no significant difference in 
mean SO2, TMRE uptake decreased in hypoxia (p<0.05) and CCCP (p<0.03) groups. Panel 
3.4C shows the relationship between regional TMRE uptake and regional SO2 in each group. 



Each curve corresponds to a distribution of tissue pixels parsed by the SO2 in the nearest 
vessel. In normoxia and CCCP groups, TMRE uptake is comparable across all SO2. During 
hypoxia, TMRE uptake increases in low-SO2 regions. Panel 3.4D shows the comparison of 
TMRE uptake across groups for each SO2 level. TMRE uptake in the normoxia-breathing group 
is greater than uptake in hypoxia or CCCP groups, regardless of SO2. This indicates metabolic 
changes in the tissue that cannot be sensed by SO2 alone. n = 6 mice (normoxia) and n = 3 
mice (hypoxia and CCCP), unless otherwise noted in legend. 

Figure 3.5 summarizes the TMRE uptake characteristics of non-tumor tissue, non-metastatic 
tumors (67NR and 4T07), and metastatic tumors (4T1), and the relationship between SO2 and 
TMRE60 in each group. The boxplots in Figure 3.5B show that TMRE uptake is increased in all 
tumor types relative to non-tumor, but SO2 is comparable in all groups. TMRE60 is not 
distinguishable between tumors lines. Interestingly, Figure 3.5C shows that a relationship may 
exist between SO2 and TMRE in non-metastatic 67NR and 4T07, but not in normal tissue or 
metastatic 4T1. TMRE uptake increases slightly as SO2 decreases in 67NR and 4T07, 
indicating the ability of these tumors to maintain higher mmp in regions of greater oxygen 
consumption. When all groups are compared at a given SO2 in Figure 3.5D, TMRE60 is 
consistently increased in tumor relative to normal, with a slight trend TMRE60,67NR > TMRE60,4T07

> TMRE60,4T1 at all SO2. In vitro imaging, shown in Figure 3.5E, reveals that TMRE uptake is 
comparable among the tumor lines, corroborating in vivo results. 



Figure 3.5 Increased TMRE uptake in tumors suggests aberrant mitochondrial 
metabolism. Panel 3.5A shows TMRE uptake and vascular oxygenation (SO2) in a nontumor 
window chamber and nonmetastatic (67NR and 4T07) and metastatic (4T1) tumor window 
chambers after injection of 0.1mL of 25uM TMRE. Tumor regions are outlined in white. Figure 



3.5B shows mean TMRE60 and SO2 in all tissue types. TMRE uptake is increased in tumors 
(67NR > Non-tumor, p<0.04), and mean SO2 is comparable across all groups. Figure 3.5C 
shows the relationship between regional TMRE60 and regional SO2 in each tissue type. Each 
curve corresponds to a distribution of tissue pixels parsed by the SO2 in the nearest vessel. In 
non-tumor tissue, TMRE uptake is stable regardless of SO2. In non-metastatic 67NR and 4T07, 
trends indicate that TMRE uptake increases with decreasing SO2. In metastatic 4T1, TMRE 
uptake is comparable across SO2. Figure 3.5D shows that TMRE uptake in tumors is greater 
than in non-tumor tissue regardless of regional SO2. The tumor line 67NR consistently has the 
greatest TMRE uptake at all SO2. In vitro imaging of all tumor lines is shown in Figure 3.5E. 
Cells were incubated with TMRE for 30 minutes prior to imaging. Hoescht nuclear stain was 
added to cells 10 minutes prior to imaging. TMRE uptake was indistinguishable across groups. 
Error bars show standard error. Group numbers indicated in legend. n = 6 mice per group 
unless otherwise noted (Fig 3.5B,C,D). n = 6 plates per cell line (Fig 3.5E).  
 
A preliminary study relating TMRE fluorescence intensity to predicted TMRE concentration is 
shown in Figure 3.6. A concentration curve was constructed from fluorescence measurements 
of known TMRE concentrations in solution (PBS), imaged with the same imaging system as our 
in vivo results. Fluorescence signal was background-subtracted using a plate of PBS containing 
no TMRE. Fluorescence was additionally corrected for day-to-day variations in lamp signal with 
an identical protocol used to correct all in vivo data (scaling factor = 1000/mean fluorescence of 
rhodamine standard). Increasing TMRE concentration linearly correlated with increasing 
corrected fluorescence signal (R2 = 0.98, p<0.001). The equation governing the linear fit in 
Figure 3.6A was used to calculate the predicted tissue-level TMRE concentration from the 
average measured fluorescence of each group. Predicted tissue-level concentration ranges 
from 9.8nM (non-tumor) to 23.8nM (67NR). 
 

Figure 3.6 TMRE uptake and predicted tissue-level concentration in all tissues. In Fig 
3.6A, solutions containing increasing concentrations of TMRE (0-500nM) dissolved in PBS were 
imaged with the hyperspectral microscope system using the same imaging settings as the in 
vivo studies. Mean fluorescence intensity was averaged over the entire illuminated region of the 
phantoms. Background signal was calculated by imaging a plate containing only PBS, and the 
background fluorescence was subtracted from each TMRE phantom to give “corrected 
fluorescence intensity” (y-axis). Figure 3.6B shows the estimated mean concentration of TMRE 
at the tissue level in each tissue type. The curve in Fig 3.6A was used to calculate the predicted 
concentration (nM) from the measured TMRE fluorescence. 
 

2: Development of a hypoxia “stress test” to relate metabolic stress response to 
metastatic potential 



 
In Figure 3.7, 67NR, 4T07 and 4T1 window chamber tumors were stressed with hypoxia (10% 
inspired O2). Based on our previous studies in non-tumor (shown in Fig 3.3, 3.4 and 3.7B), we 
expected a decrease in TMRE60 during hypoxia relative to normoxia conditions (p<0.02). 
Interestingly, the non-metastatic tumor lines 67NR and 4T07 showed a significant decrease in 
TMRE uptake during hypoxia (p<0.04 for 67NR, p<0.05 for 4T07). On the contrary, TMRE 
uptake increased in metastatic 4T1 tumors (p<0.04). The ability to maintain mitochondrial 
membrane potential during stress such as hypoxia may indicate metabolic plasticity of 4T1 cells, 
and may be related to increased aggressiveness. 
 

 
Figure 3.7 TMRE uptake changes in response to hypoxia.  Panel 3.7A shows TMRE uptake 
in 67NR, 4T07, and 4T1 tumors subjected to normoxia (21% O2) or hypoxia (10% O2). In Figure 
3.7B, mean TMRE60 is shown for all tissue types under normoxia and hypoxia. At baseline, 
TMRE60 in 67NR is significantly increased relative to non-tumor (p<0.04). After hypoxia, TMRE60 
decreases in non-tumor, 67NR, and 4T07 (p<0.02, p<0.04, and p<0.05, respectively). TMRE60 
increases in 4T1 after hypoxia (p<0.04). 
 
We also investigated the change in glucose uptake in response to hypoxia. At baseline, 
metastatic 4T1 showed increased glucose uptake compared to all other tissue types (p<0.05). 
Non-tumor tissue showed an expected increase in glucose uptake during hypoxia (p<0.04), 
consistent with a shift away from oxidative metabolism and toward glycolysis when oxygen is 
limiting. The trends in 67NR and 4T07 tumors again mirrored the trend seen in non-tumor, with 
glucose uptake increasing slightly (though not significantly). In 4T1 however, glucose uptake 
decreased slightly, though not significantly.  
 

 
Figure 3.8 2-NBDG uptake changes in response to hypoxia. Panel 3.8A shows 2-NBDG 
uptake in 67NR, 4T07, and 4T1 tumors subjected to normoxia (21% O2) or hypoxia (10% O2). In 
Figure 3.8B, mean 2-NBDG60/RD is shown for all tissue types under normoxia and hypoxia. At 
baseline, 2-NBDG60/RD in 4T1 is significantly increased relative to all other groups (p<0.05). 
After hypoxia, 2-NBDG60/RD increases in non-tumor (p<0.04), 67NR, and 4T07 (not significant). 



2-NBDG60/RD decreases in 4T1 after hypoxia, though the change is not significant. 
 
Lastly, we combined our glucose uptake and mitochondrial membrane potential endpoints into a 
single measure of metabolism called the “optical energy budget” (OEB, see Figure 3.9) that 
could be used to compare the tumor types. The OEB summary statistic is shown over each bar 
in Figure 3.9. OEB is calculated as OEB = 2-NBDG/(TMRE+2-NBDG), and an increased OEB 
corresponds to a tissue type that displays increased glucose uptake relative to mitochondrial 
membrane potential.  Under normal conditions, 4T1 shows a highly glycolytic phenotype relative 
to 67NR and 4t07, consistent with our knowledge of the Warburg effect in this cell line. During 
hypoxia, the OEB reveals that 67NR and 4T07 shift metabolism toward glycolysis, whereas 4T1 
seems to increase mitochondrial efficiency and decrease glucose uptake. The ability of some 
particularly aggressive cell types to maintain mmp during hypoxia has been reported, but to our 
knowledge has not been observed with metabolic imaging, or in the 4T1 tumor type. The link 
between tumor hypoxic response and metastasis is not yet well defined. 
 

 
Figure 3.9 An optical energy budget reveals a unique hypoxic signature in metastatic 
tumors. 2-NBDG and TMRE uptake in tumors under baseline conditions are shown in Panel 
3.9A. Optical energy budget (OEB = 2-NBDG/(TMRE+2-NBDG)) is shown for each tumor type 
in Figure 3.9B. OEB was increased in 4T1 relative to 67NR or 4T07 tumors. Uptake of TMRE 
and 2-NBDG under hypoxia (10%) is shown in Panel 3.9C. The OEB under hypoxia is shown for 
each tissue type. Relative to baseline conditions, 67NR and 4T07 increased OEB dramatically 
(102% and 318%, respectively). 4T1 tumors decreased OEB during hypoxia, showing a 49% 
decrease in OEB.  
 
Our plans for year 5 originally focused on monitoring therapy response with glucose and 
oxygenation endpoints. However, emerging literature and new insights gained from our project 
shifted our focus toward incorporating a measurement of mitochondrial membrane potential into 
our toolbox. We are now well-poised to pursue a therapy monitoring project utilizing our 
integrated glucose, mmp, and SO2 imaging technique. Targeted therapies such as PI3K-
inhibition can lead to significant ‘normalization’ of the vasculature and direct cell signaling 
effects, both of which can have a profound impact on metabolic state. Our goal is to evaluate 
our optical energy budget in the context of therapy to determine which tumors are responsive at 



an early timepoint based on the change or absence of change in OEB, allowing for 
personalization of therapy based on early response signatures. We also hope to use our 
hypoxic stress test as a pre-treatment screening tool, i.e. determine if we can correlate hypoxic 
changes in OEB to eventual therapy outcome. 

3. KEY RESEARCH ACCOMPLISHMENTS:  

AIM 1 

 A robust spectral data acquisition software package was developed to facilitate data 
collection and integrity.  

 Hi-resolution raster-scanned images were acquired for approximately 60 lumpectomy 
patients; the analysis based on breast density corroborates previous findings.   
 
 

AIM 2 

 Optimized the sparse component analysis (SCA) algorithm to distinguish positive from 
negative biopsies imaged with the high resolution microendoscope (HRME). 

 Explored how higher resolution microscopes, such as a fluorescent confocal microscope, 

could be used to visualize ductal morphology in addition to nuclear morphology.  

 Partnered with Rice University to acquire confocal images of resected breast tissue and 

developed computerized algorithms to segment and quantify nuclear and ductal 

parameters to further enhance our ability to characterize breast architectural features. 

 

AIM 3  

 Optimized an optical imaging agent for in vivo measurement of mitochondrial membrane 
potential in tumors 

 Used optical imaging to reveal significant differences in the baseline metabolic phenotype 
of non-tumor tissue, non-metastatic tumors, and metastatic tumors 

 Demonstrated a hypoxic stress test to identify aggressive tumor types in vivo 
 

4. REPORTABLE OUTCOMES:  

AIM 1: 

1. Nichols, B.S., et al., A Quantitative Diffuse Reflectance Imaging (QDRI) System for 

Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins. 

PloS one, 2015. 10(6): p. e0127525. 

AIM 2: 

Journal publications – (published, in review and in progress) 

1. Mueller J, Gallagher J, Chitalia R, Krieger M, Erkanli A, Willett R, Geradts J, Ramanujam 

N. Rapid staining and imaging of sub-nuclear features to differentiate between malignant 

and benign breast tissues at a point-of-care setting. BMC Cancer, 2015. Under review.   



2. Dobbs J*, Mueller J*, Krishnamurthy S, Shin D, Kuerer H, Yang W, Ramanujam N, 

Richards-Kortum R. Micro-anatomical quantitative optical imaging: towards automated 

assessment of breast tissues. Breast Cancer Research, 2015, 17: 105. 

3. Mueller J, Fu H, Mito J, Whitley M, Chitalia R, Erkanli A, Dodd L, Cardona D, Geradts J, 

Willett R, Kirsch D, Ramanujam N. A quantitative microscopic approach to predict local 

recurrence based on in vivo intraoperative imaging of sarcoma tumor margins. 

International Journal of Cancer, 2015, 137(10): 2403-12. 

 
Conference abstracts and proceedings 
 

1. Mueller J, Fu H, Javid M, Kirsch D, Willett R, Brown Q, Ramanujam N. Structured 
Illumination Fluorescence Imaging and Analysis for Identification of Residual Disease 
during Cancer Surgery. Biomedical Optics (BIOMED) Topical Meeting, 2014.  

 
2. Mueller J, Fu H, Mito J, Javid M, Harmany Z, Dodd L, Willett R, Kirsch D, Brown Q, 

Ramanujam N. Quantitative high-resolution fluorescence imaging for in vivo detection of 
residual disease during cancer surgery. NCI-NIBIB Point of Care Technologies for 
Cancer Conference, 2014. 

 
AIM 3: 
 
Journal publications – (published, in review and in progress) 

1. Martinez, A.F., S.S. McCachren III, M. Lee, H. Murphy, M.W. Dewhirst, N. Ramanujam. 
“In vivo optical imaging of the cationic rhodamine dye TMRE shows changes in 
mitochondrial membrane potential due to environmental perturbations and aberrant 
cancer metabolism”. In progress. 

2. Martinez, A.F., S. McCachren III, M. Lee, H. Murphy, M.W. Dewhirst, N. Ramanujam. 
“Optical energy budget reveals differences in the metabolic phenotype and hypoxic 
response of metastatic and non-metastatic cancers”. In progress. 

3. Rajaram, N., A. Reesor, C. Mulvey, A.E. Frees, and N. Ramanujam. “Non-invasive, 
simultaneous quantification of vascular oxygenation and glucose uptake in tissue.” PLoS 
ONE 10(1): e0117132, doi:10.1371/journal.pone.0117132, 2015. 

4. Frees, A.E., N. Rajaram, S.S. McCachren III, A.N. Fontanella, M.W. Dewhirst, and N. 
Ramanujam. “Delivery-corrected imaging of fluorescently-labeled glucose reveals 
distinct breast cancer phenotypes.” PLoS ONE 9(12): e115529, 
doi:10.1371/journal.pone.0115529, 2014. 
 

Conference abstracts and proceedings 
1. Martinez, A.F., S.S. McCachren, M. Lee, N. Rajaram, M.W. Dewhirst, and N. 

Ramanujam. "Optical toolbox for in vivo analysis of glucose uptake, vascular 
oxygenation, and mitochondrial membrane potential in breast cancer." Technical poster 
session. Emerging Analytical Approaches, AACR: Metabolism and Cancer, Bellevue, 
Washington, June 2015. 

 

4. CONCLUSIONS:    

Aim 1 



We have demonstrated that a multi-channel scanning technique is capable of providing rapid, 
sub-millimeter resolution surveillance of the tumor margin landscape, which accurately reports 
on the underlying histopathology. Although a 0.75mm sampling resolution still does not qualify 
as microscopy, it does provide a highly pragmatic technological intersection addressing the 
limitations of the native wide-field spectroscopy system and microscopy, and provides a 3-fold 
improvement in terms of the amount of tissue reviewed during histopathology. Sampling of a full 
margin currently requires 13.8 minutes, significantly longer than the 30 seconds required for a 
single, 6mm resolution spectral snapshot, however, this still is within the timing constraints 
warranted for an intra-operative tool: the amount of time elapsed between specimen removal 
and surgery completion is typically between 25-35 minutes.  The margin-level, tissue 
morphology is accurately quantified using [β-carotene]/<µs’> as a surrogate for mammographic 
breast density, which can subsequently be used to stratify and accurately classify site level 
data.  At the site-level, we observed that inadequate sampling resolution can lead to 
misclassification of tissue subtypes, specifically fibroadipose tissue, a mix of fibrous and 
adipose tissue, could not be statistically distinguished from pure adipose at the native 6mm 
probe resolution. A future analysis will quantify the influence of benign tissue near very small 
regions of disease, as site-level tissue types were not clearly clustered in several cases with 
purported malignant regions. In conclusion, these studies suggest that quantitative optical 
spectral imaging may be a pragmatic solution to the margin assessment problem and could 
ultimately be integrated into the clinical standard of care. 

 

Aim 2 

In conclusion, acriflavine staining and high resolution microendoscope (HRME) imaging 

combined with SCA+CT can be used to quantitatively diagnose breast disease. Additionally, 

quantitative APF and ductal parameters were measured in confocal fluorescence images of 

fresh breast tissue and used to develop a classification algorithm that distinguishes between 

259 benign and malignant sites with an accuracy of 88%. The APF and ductal parameters 

described in this study could be used to develop criteria to automate breast lesion diagnosis for 

immediate evaluation of fresh tissue at the point of care obviating the need for extensive tissue 

preparation. Together, this work yields an optimized set of tools that are capable of imaging 

tissue at high resolution with no tissue processing and that can automatically segment and 

quantify those specimens. Ultimately, this platform provides a potentially useful adjunct to 

histopathological techniques by providing quality control at the point of care setting.   

 

Aim 3 

Recent literature challenges conventional wisdom that aerobic glycolysis is the sole metabolic 
program for aggressive and therapy-resistant cancers. Glucose and oxygenation endpoints are 
indeed critical indicators of tumor fate, but incorporating additional metabolic endpoints may 
give a more holistic view of cancer phenotype. In particular, mitochondrial metabolism has been 
indicated as a crucial metabolic program for quiescent cells that evade therapy. 
 
We have incorporated the fluorescent molecule TMRE into our metabolic imaging toolbox to 
measure mitochondrial membrane potential, a surrogate for mitochondrial metabolism. By using 
this integrated toolbox to measure glucose uptake, vascular oxygenation, and mitochondrial 
membrane potential, we were able to separate non-tumor tissue, non-metastatic tumors, and 



metastatic tumors based on metabolic phenotype. We developed a statistic called the “optical 
energy budget” (OEB) to quickly summarize metabolic phenotype, and saw that this statistic 
could monitor changes in metabolism during hypoxic stress. Further, the pattern of changes in 
OEB during hypoxia was distinct in metastatic tumors. 
 
Looking ahead, we believe the optical toolbox and corresponding OEB endpoint will be valuable 
tools for measuring response to cancer therapies targeted at metabolism and vascular 
normalization. The method is ready for near-immediate adoption in preclinical studies for testing 
new cancer therapies and developing deeper understanding of tumor biology. To modify this 
method to be suitable for clinical studies, we propose to transition our optical toolbox to an 
optical spectroscopy platform. Optical spectroscopy is portable, fast, and non-destructive, 
making it an ideal technology for clinical studies, as well as for pre-clinical studies requiring 
repeated measurements over weeks or months.  
 
Lastly, since our results indicate that using hypoxia to stress tumors can cause them to reveal 
their true metabolic phenotype, we propose that such a test could be used to aid in diagnosis 
and prognosis. In particular, this could be an exciting strategy when coupled with emerging 
patient-derived xenograft models. Further, incorporating a simple hypoxic stress test with 
currently used metabolic imaging modalities such as Positron Emission Tomography (PET) 
could be implemented without much change in standard pre-clinical or clinical workflow. 
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